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Abstract

In this paper, we consider two different problems of computing the minimum set of ver-
tices whose removal kills all cycles of a certain type. The first problem is Feedback Vertex
Set where we want to kill all the cycles in a graph and the second problem is Even Cy-
cle Transversal where our aim is to kill all even length cycle. While Feedback Vertex
Set has proven approximation bounds, exact algorithms and parameterized algorithm, Even
Cycle Transversal has not been well studied. Since both the problems are NP-complete,
we parameterized exact algorithms for them. We give an O∗(5k) parameterized algorithm for
Feedback Vertex Set and extend it to obtain an O∗(13k) parameterized algorithm for Even
Cycle Transversal .

1 Introduction

Given a universe U of elements and a collection S = {S1, S2, . . . , Sm} of subsets of U , the hitting
set problem asks for a subset T ⊆ U of minimum cardinality having non-empty intersection with
every subset Si ∈ S. This problem is NP−hard [17] and admits a approximation of log2 |U | [8]
using a greedy algorithm.

Their are special instance of hitting set problem where the number of subsets, |S|, is exponential
in the size of universe, |U | [6]. A greedy approximation algorithm in such a case is infeasible.
Typically, S has a succint representation in these cases and given a set T , it can be determined, in
polynomial time, whether T is a hitting set or not.

Parameterized complexity focuses on classifying problems according to their inherent difficulty
with respect to multiple parameters, rather than just input size. Assuming, P 6= NP, there are
many problems requiring superpolynomial time in terms of the size of the input but are polynomial
time solvable in terms of input size when we consider an additional parameter k. A problem with
input size n and a parameter k is said to be fixed point tractable (FPT) if there exists an algorithm
to solve the problem with running time f(k)·nO(1) where f is a function of k alone. The infeasibility
of greedy approximation algorithm when size of S is exponential in the size of U warrants a need
for studying parameterized algorithm.

Given a graph, cycle hitting problems asks for a subset of vertices of the graph with non-empty
intersection with every cycle of a “particular” type. We consider two different types of cycle hitting
problems: Feedback Vertex Set (FVS) and Even Cycle Transversal (ECT). FVS asks for
a minimum set of vertices whose deletion kills all the cycles of a graph. ECT asks for a minimum
set of vertices whose deletion kills all the even length cycles of a graph. In terms of parameterized
complexity, FVS (ECT) problem is: Given a graph G and a parameter k, find a subset of k vertices
whose deletion kills all the cycles (even cycles, respectively) of the graph.

Feedback Vertex Set plays a prominent role in deadlock recovery in operating systems: a
deadlock is represented by cycle in system resource allocation graph. To recover fromd deadlocks,
we need to abort the minimum set of processes such that system resource allocation graph becomes
acyclic. Feedback Vertex Set also has applications in the areas of constraint satisfaction
problems and Bayesian inference [1] and in VLSI chip design.
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1.1 Previous Work

The theory of parametrized complexity was developed by Downey and Fellow [12]. For a more
elaborate exposition, refer the book by Flum and Grohe [14].

The basic technique we use is iterative compression, which was first discovered when designing
FPT algorithm for Odd Cycle Transversal problem (OCT) [23]. OCT asks for a minimum
subset of vertices whose deletion kills all the odd cycles of the graph, i.e., makes the graph bipartite.
The running time of the original FPT algorithm for OCT was improved to O∗(3k) [20]. Recently,
a linear programming based FPT algorithm [19] improved the running time to O∗(2.32k).

FVS is one of the most well studied problem in paraterized complexity and has a long list
of FPT algorithm for FVS includes [4, 11, 12, 22, 16, 10, 13, 7, 5, 2, 9, 18]. The best known
deterministic algorithm runs in time O∗(3.6k) [18]. If we allow randomization, the Cut&Count
technique gives an O∗(3k) algorithm [9].

While OCT and FVS has attracted a lot of attention, ECT har largely been left ignored.
Kakimura et. al. [15] looked at a generalization of ECT, Subset Even Cycle Transversal. In
this problem, apart from the graph G, an additional vertex set T ⊆ V (G) is given as input. The
objective is to find a minimum vertex set S ⊆ V (G) such that G − S does not contain any even
cycle with non-empty intersection with T . T = V (G) corresponds to Even Cycle Transversal
problem. The algorithm described in the paper uses graph minor machinery and has running time

22
2k

. Misra et. al. [21] give an O∗(50k) algorithm for Even Cycle Transversal . They used
iterative compression and give a branching algorithm with branching factor 7.

The main contributions of this paper are two fold: a) We present an O∗(5k) algorithm for
Feedback Vertex Set which simplifies the analysis of the algorithm presented by Chen et.
al. [7]. b) We present an O∗(13k) algorithm for Even Cycle Transversal which beats the
currently best known bound of O∗(50k) presented by Misra et. al. [21].

2 Preliminaries

Notation. For a graph G, we denote the vertex set of G by V (G) and edge set of G by E(G).
Alternately, the notation G(V,E) or G = (V,E) is also used. Let S ⊆ V (G). By G[S], we mean
the subgraph induced on S. The subgraph G[V (G) \S] is denoted by G−S. If G′ is a subgraph of
G, V (G′) denotes the vertex set of G′ and G−G′ denotes the subgraph G[V (G)− V (G′)]. G′ ∪ S
denotes the subgraph G[V (G′) ∪ S]. Similarly, if G1 and G2 are two subgraphs of G, G1 ∪ G2

denotes the subgraph G[V (G1) ∪ V (G2)]. If P and P ′ are two paths, P ′ ⊆ P denotes the fact that
P ′ is a subpath of P . Set {1, 2, . . . , n} is denoted by [n].

Definition 1 A set of vertices is called a fvs (feedback vertex set) if their removal kills all the
cycles in the graph.

Definition 2 A set of vertices is called an ect (even cycle terminator) if their removal kills all the
even cycles in the graph.

Problem 1 Feedback Vertex Set (FVS) Given an undirected unweighted graph G and a positive
integer k, does there exist a fvs of G of size k? If yes, find it.

Problem 2 Even Cycle Transversal (ECT) Given an undirected unweighted graph G and a
positive integer k, does there exist a ect of G of size k? If yes, find it.
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Figure 1: C2 = P2 ∪ P ′2.

Observation 3 Let G be a graph and S be a fvs of G. Then G− S is a forest.

Definition 4 An odd graph is a graph without any even cycles.

Definition 5 A cactus graph is a connected graph in which two cycles share at most one vertex in
common. An odd cactus graph is a graph which is an odd graph as well as a cactus graph.

For simplicity, we will slightly abuse the notation and say that a graph is a cactus graph if each
of its connected component is a cactus graph.

A biconnected graph is a graph with vertex connectivity two, i.e., removal of any one vertex still
leaves the graph connected. In other words, a biconnected graph is a graph with no articulation
points. A biconnected component, equivalently a block, of a graph is a maximally biconnected
subgraph. Hence, every block of a cactus is either an isolated vertex (if a connected component is
simply an isolated vertex), K2 or a cycle.

Lemma 6 If there are two cycles C1 and C2 in a graph G which share two or more vertices in
common, there’s an even cycle in G.

Proof: If C1 or C2 is even, there’s nothing to prove. Hence, assume that both C1 and C2 are odd
cycles. Let S be the set of vertices which are common in C1 and C2 such that |S| ≥ 2. Let x, y ∈ S
be such that one of the paths connecting x to y in C1, say P1, contains no other vertex belonging
to S. Let P2 and P ′2 be the two paths from x to y in C2. Since C2 is an odd cycle, P2 and P ′2 have
different parities. Therefore, cycles P1 ∪ P2 and P1 ∪ P ′2 have different parities. Hence, one of the
cycles must be of even length. See Figure 1 for an illustration.
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Corollary 7 Let G be a graph and S be an ect of G. Then G− S is an odd cactus graph.

Hardness of Feedback Vertex Set . Hardness of Feedback Vertex Set has been estab-
lished by reducing Vertex Cover problem to FVS [17]. We present this result for the sake of
completeness.
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Definition 8 The vertex cover of a graph is a set of vertices such that every edge of the graph is
incident on at least one vertex of the set.

Definition 9 Vertex Cover Problem Given a graph G and a positive integer k, find a vertex
cover of G of size k, if it exists.

We reduce a Vertex Cover instance (G, k) to a Feedback Vertex Set instance (H, k) as
follows:

V (H) = V (G) ∪ {huv | (u, v) ∈ E(G)}
E(G) = {(u, huv), (huv, v), (u, v) | (u, v) ∈ E(G)}

The idea is to “convert” every edge into a triangle. Covering of an edge corresponds to killing
that triangle and vice versa.

Observation 10 A vertex of the form huv of the second type has exactly two neighbors: u and v.

Lemma 11 G has a vertex cover of size k iff H has a fvs of size k.

Proof: We will show that any k−sized vertex cover of G is a fvs of H as well. Consider a cycle in
H involving some vertex of type huv. By the above observation, this cycle must also contain the
vertices u and v, which forms an edge in G. This means at least one of u or v must be in the vertex
cover, which kills the cycle. For cycles in H involving no vertex of the type huv, all the edges are
killed because each edge must be covered by the vertex cover.

If we have a k−sized fvs F of H, we can construct a vertex cover F ′ of G of size at most
k. To construct F ′, replace each vertex of the type huv by u (or, v) and eliminate duplicates.
Corresponding to every edge (u, v) ∈ E(G), there exists a cycle (u, hu,v, v) in H. Hence one of u,
v or hu,v must be in F . This implies either u or v is present in F ′. Hence, at least one end point
of every edge of G is present in F ′.

2

Hardness of Even Cycle Transversal . Hardness of Feedback Vertex Set can be estab-
lished by a reduction from Feedback Vertex Set problem. At the top level, the reduction
involves replacing every cycle by an even cycle.

We reduce a Feedback Vertex Set instance (G, k) to an Even Cycle Transversal in-
stance (H, k) as follows:

V (H) = V (G) ∪ {huv | (u, v) ∈ E(G)}
E(H) = {(u, huv), (huv, v) | (u, v) ∈ E(G)}

Observation 12 Vertices of the form hu,v in H have exactly two neighbors: u and v.

The idea is to subdivide each edge (u, v) into (u, huv) and (huv, v). Any cycle v1, v2, . . . , vt in G
is replaced by a cycle v1, hv1,v2 , v2, hv2,v3 , . . . , hvt−1,vt , vt, hvt,v1 in H, i.e., a cycle of length t gets con-
verted into a cycle of length 2t. Conversely, every cycle inH is of the form v1hv1v2v2hv2v3v3 . . . hvt−1vtvthvtv1
where v1v2 . . . vt is a cycle in G.
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Observation 13 There is a one to one correspondence between the cycles in G and that of H.
Under this correspondency, a cycle of length t in G corresponds to a cycle of length 2t in H.

Lemma 14 G has a fvs of size k iff H has a ect of size k.

Proof: Observe that if S ⊆ V (G) is a fvs of G, then S is trivially an ect of G. To prove the other
direction, let S be an ect of H. Replace each vertex of type huv in S by u (i.e, one of u or v). Let
the resulting set be S′. Then S′ is also a fvs of G. Observe that |S′| ≤ |S|.

2

We give an O∗(5k) algorithm for Feedback Vertex Set and extend it to obtain an O∗(13k)
algorithm for Even Cycle Transversal . This improves the currently best known bound of
O∗(50k) for Even Cycle Transversal [21].

To solve the two problems, we will look at their iterative compression version:

Problem 3 Iterative compressive Feedback Vertex Set (IC-FVS) Given a graph G and a
(k + 1)−sized fvs S of G, find a k−sized fvs S′, if it exists.

Problem 4 Iterative compressive Even Cycle Transversal (IC-ECT) Given a graph G and
a (k + 1)−sized ect S of G, find a k−sized ect S′, if it exists.

Theorem 15 An FPT algorithm for IC-FVS (IC-ECT, respectively) gives an FPT algorithm for
FVS (ECT, respectively).

Proof: Let V (G) = {v1, v2, . . . , vn}. Define Gi := G[{v1, v2, . . . , vi}]. Suppose Gi has a k−sized
fvs Fi. Then Gi+1 has a (k + 1)−sized fvs , Fi ∪ {vk+1}. Using IC-FVS algorithm, compute
a k−sized fvs Fi+1 for Gi+1. Repeat this till a k−sized fvs for G is computed. Observe that
f + K := {v1, v2, . . . , vk} is obviously an fvs of GK , which is the base case for this iterative
procedure.

Moreover, if the time complexity of IC-FVS is O(f), the time complexity of FVS is O(n · f).
Same argument holds for ect as well.

Since k is not known apriori, we can guess a value of k and run this algorithm. If it succeeds,
then make the next guess lower else higher. Using binary search, we can compute an fvs (ect ) of
optimum size in O(n · log n · f) time. 2

We will try to devise a solution for IC-FVS (IC-ECT) problem. Given a graph G and a
(k+ 1)−sized fvs S, let S′ be a k−sized fvs of G. Let Y = S ∩S′, N = S \S′ and N ′ = S′ \S (See
Figure 2). Towards constructing S′, fix Y . In the induced subgraph G − Y , we intend to find a
fvs N ′ of size at most k − |Y |, which is disjoint from N . We will incrementally construct N ′. This
process is repeated for every possible subset Y of S till a k−sized fvs (ect , respectively) is found.

Since S is a fvs , by Corollary 3, G− S is a forest. For S′ to be a fvs , N must also be a forest.
Similarly, for ect , we can say that both G− S and N must be odd cactus.

Hence, we define the following variant of both the problems, where H = G− Y :

Problem 5 Disjoint Feedback Vertex Set (DISJOINT-FVS) Given a graph H and a subset
N ⊆ V (H) such that both H[N ] and H −N are forests, find a subset of vertices N ′ ⊆ V (H −N)
of size at most k′ such that N ′ is a fvs of H. We denote its instance by (H,N, k′).
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Figure 2: Partitioning of S into N and Y . The new fvs (ect ) S′ is composed of Y and some vertices
from G− S but no vertex from N .

N′

H = G -Y

N

Figure 3: Disjoint version of FVS and ECT. Both H[N ] and H − N are forest (odd cactus). We
need to find a subset of N ′ ⊆ H −N of a specified size k′ such that H −N ′ is a forest (odd cactus,
respectively).

Problem 6 Disjoint Even Cycle Transversal (DISJOINT-ECT) Given a graph H and
a subset N ⊆ V (H) such that both H[N ] and H − N are odd cactus, find a subset of vertices
N ′ ⊆ V (H−N) of size at most k′ such that N ′ is a ect of N . We denote its instance by (H,N, k′).

See Figure 3 for an illustration.

Theorem 16 An FPT algorithm for DISJOINT-FVS (DISJOINT-ECT) gives an FPT algorithm
for IC-FVS (IC-ECT, respectively). Moreover, if the running time of former algorithm is O∗(cα)
(for some constant c), the running time of the algorithm for iterative compressive version will be
O∗((c+ 1)α) where α ≤ k.

Proof: Let (G,S) be an instance of IC-FVS such that |S| = k + 1. We branch into at most
2|S| = 2k+1 subcases, guessing the intersection of the solution S′ with the set S. Let the current
guess be Y ⊆ S. We remove Y from G and call the DISJOINT-FVS instance (H := G − Y,N :=
S − Y, k − |Y |). Iterating over all possible subsets Y of S, the total running time is

O∗
(∑
Y⊆S

ck−|Y |

)
= O∗

(∑
i

∑
Y⊆S
|Y |=i

ck−|Y |

)
= O∗

(∑
i

(
k

i

)
ck−i

)
= O∗

(∑
i

(
k

i

)
ci

)
= O∗((c+1)k)

The same can be argued about IC-ECT as well. 2
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3 Feedback Vertex Set

This section establishes Theorem 17.

Theorem 17 Feedback Vertex Set can be solved in O∗(5k) time.

By Theorem 15 and Theorem 16, to prove Theorem 17, it suffices to solve DISJOINT-FVS.
Before moving further, we consider two different problems.

Problem 7 Lowest Common Ancestor Given a rooted tree T and a set of pair of nodes
{(s1, t1), (s2, t2), . . . , (sk, tk)}, find the lowest common ancestor of each pair of nodes (si, ti) ∀ i ∈ [k].

Theorem 18 (cf.: [3]) There exists a linear time algorithm for solving Lowest Common An-
cestor problem.

Denote the lowest common ancestor of u and v by LCA(u, v).

Problem 8 Multicut on Trees Given a tree T and a set of pairs of nodes {(s1, t1), (s2, t2), . . . , (sk, tk)},
find a minimum set S whose removal disconnects (si, ti) ∀ i ∈ [k]. The nodes s1, t1, s2, t2, . . . , sk, tk
are called terminal nodes.

Deterministic polynomial time algorithm for Multicut on Trees . Multicut problem for
general graphs is a hard problem. Fortunately, there exists a polynomial time algorithm for the
multicut problem on trees which uses the algorithm of Problem 7 as a subroutine.

Root the tree arbitrarily. We then compute LCA of each pair of terminal node using the
algorithm of Theorem 18. Let LCA(si0 , ti0) be the node with the maximum depth out of all
LCA(si, ti).

Lemma 19 There exists an optimal solution S to multicut problem on trees such that LCA(si0 , ti0) ∈
S.

Proof: Since the pair (si0 , ti0) is to be disconnected, one vertex from the unique path joining si0
and ti0 must be present in S. Suppose a vertex v, not equal to LCA(si0 , ti0), is picked from this
unique path. Since LCA(si0 , ti0) has maximum depth among all LCA nodes, if v disconnects some
other pair of node (si′ , ti′), the path joining si′ and ti′ must also pass through LCA(si0 , ti0). Hence,
v can be replaced by LCA(si0 , ti0) in the solution set. 2

Lemma 19 gives a polynomial time algorithm for multicut problem on trees: Maintain a set of
pairs of terminal nodes which are to be disconnected and compute their LCAs. Add the LCA with
maximum depth to the solution set and delete the pairs of terminal nodes which get disconnected.
Repeat this process till all pairs of terminal nodes are disconnected. The overall Algorithm is
described as Algorithm 1.

We will now focus on the problem DISJOINT-FVS. The particular instance of DISJOINT-FVS
we consider is: Given a graph H and a subset N ⊆ V (H) such that both H[N ] and H − N are
forests, compute a subset of vertices of N ′ ⊆ V (H −N) of size at most k′ which is a fvs of H.

Definition 20 A connected component T of H − N is called a branching tree if T ∪ N contains
a cycle or T has adjacencies to more than one connected component of N . Therefore, if T is a
branching tree , T ∪N either has a cycle or has fewer connected components than N .
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Algorithm 1 Multicut on Trees

1: function MulticutTrees(T, ter := {(s1, t1), (s2, t2), . . . , (sk, tk)})
2: if ter is empty then
3: Return ∅
4: else
5: for all i ∈ [k] do
6: li ← LCA(si, ti)
7: end for
8: li0 ← Node with the maximum depth among li’s
9: ter′ ← {(si, ti) | li0 does not lie on the path joining si to ti}

10: Return li0 ∪MulticutTrees(T, ter′)
11: end if
12: end function

We use branching trees to compute N ′. For each connected component T of H −N , either by
deleting vertices from T or moving a subtree of T to N , we ensure that finally, T ∪N is acyclic and
edges from T are incident in at most one connected component of N .

Let PT (x, y) denote the unique path joining nodes x and y in the tree T .

Definition 21 A pair of nodes (s, t) of a tree T is called a branching terminal pair if H[PT (s, t)∪N ]
is contains a cycle or PT (s, t) has adjacencies to more than one connected component of H[N ].

Observation 22 The set of branching terminals in a branching tree T can be computed in poly-
nomial time.

Observation 22 follows from the fact that given a pair of node (s, t) of T , it can be checked
whether (s, t) is a branching terminal pair (in polynomial time) by checking the branching terminal
pair conditions for (s, t).

Denote the set of branching terminal pair of a branching tree T by ter. Root T arbitrarily. We
compute the LCA of each pair of nodes contained in ter. Let (s0, t0) ∈ ter be the pair of node
whose LCA has maximum depth among all LCAs. In case of ties, we pick one arbitrarily. If we
intend to disconnect all pairs of nodes of ter, by Lemma 19, there exists an optimal solution which
contains LCA(s, t).

• If PT (s0, t0)∪N contains a cycle, (s, t) must be disconnected. In this case, move LCA(s0, t0)
to the solution set and delete it from the graph.

• Otherwise, PT (s0, t0)∪N has fewer connected components than N . In this case, we move the
subtree rooted at LCA(s, t) to N .

The justification of the second step is provided when we discuss the correctness of the algorithm.
We call (s0, t0) as the maximum branching terminal pair of T .

The overall algorithm is: If there exists a branching tree T , root it arbitrarily. Let (s0, t0) be
the maximum branching terminal pair of T . If PT (s0, t0) ∪N has a cycle, delete LCA(s0, t0) from
the graph and add it to the solution set. Otherwise, we branch. The first branch is analogous to
the previous case: we delete LCA(s0, t0) from the graph and move it to the solution set. In the
second branch, we move the subtree rooted at LCA(s0, t0) from G−N to N .

The entire algorithm is presented as Algorithm 2.
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Algorithm 2 Parametrized Algorithm for Feedback Vertex Set

1: function FeedbackVertexSet(G, k)
2: G′ ← Graph induced over k + 1 randomly selected vertices of G
3: S ← V (G′)
4: while V (G′) 6= V (G) do
5: if IC-FVS(G′, S) exists then
6: S′ ← IC-FVS(G′, S) . |S′| = k
7: Add a new vertex v to G′

8: S ← S′ ∪ {v} . |S| = k + 1
9: else

10: exit the for loop
11: end if
12: end while
13: if V (G) = V (G′) and IC-FVS(G′, S) exists then
14: return IC-FVS(G,S)
15: else
16: return no solution exists
17: end if
18: end function

19: function IC-FVS(G,S)
20: k ← |S| − 1 . Size of new fvs S′ should be one less than that of S
21: for all subsets Y of S do
22: N ← S − Y
23: if DISJOINT-FVS(G− Y,N, k − |Y |) exists then
24: S′ ← DISJOINT-FVS(G− Y,N, k − |Y |)
25: exit the for loop
26: else
27: continue
28: end if
29: end for
30: if no S′ is found then
31: return no solution exists
32: else
33: return S′

34: end if
35: end function
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36: function DISJOINT-FVS(H,N, k′)
37: if (Both N and H −N are not forests) or (k′ < 0) then
38: return no solution exists
39: end if
40: if k′ = 0 then
41: if H is a forest then return ∅
42: else return no solution exists
43: end if
44: end if
45: if there exists a connected component T of H −N s.t. T ∪N contains a cycle or has fewer

connected components than N then
46: (s0, t0)← maximum branching terminal pair of T . Computed from Lemma 19
47: T ′ ← tree rooted at LCA(s0, t0)
48: if PT (s0, t0) ∪N contains a cycle then
49: if DISJOINT-FVS(H \ {LCA(s0, t0)}, N, k′ − 1) exists then
50: S1 ← DISJOINT-FVS(H \ {LCA(s0, t0)}, N, k′ − 1) ∪ {LCA(s0, t0)}
51: end if
52: end if
53: if PT (s0, t0) ∪N has fewer connected components than N then
54: if DISJOINT-FVS(H \ {LCA(s0, t0)}, N, k′ − 1) exists then
55: S2 ← DISJOINT-FVS(H \ {LCA(s0, t0)}, N, k′ − 1) ∪ {LCA(s0, t0)}
56: end if
57: if DISJOINT-FVS(H,N ∪ T ′, k) exists then
58: S3 ← DISJOINT-FVS(H,N ∪ T ′, k)
59: end if
60: end if
61: if PT (s0, t0) ∪N contains a cycle then
62: if S1 has been defined previously then return S1
63: else return no solution exists
64: end if
65: else
66: if either S2 or S3 was been defined previously then return it
67: else return no solution exists
68: end if
69: end if
70: else
71: return ∅
72: end if
73: end function
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Time complexity of the algorithm DISJOINT(H,N, k′). To compute the time complexity
of the above algorithm, we will look at the following parameter:

µ = k′ + number of connected components of N (1)

When we delete a vertex and move it to the solution set, k′ decreases by one. When the subtree
rooted at a LCA node it moved to N , number of connected components of N decreases by one. In
either case, µ decreases by one. Initially, µ ≤ k+ |N |. Also, initially, |N | ≤ k+ 1 and k′ ≤ k. Also,
the IC-FVS instance always deletes a subset Y before calling DISJOINT-FVS. Hence, |N | ≤ k.
This implies µ ≤ 2k+1. Since the branching factor of this algorithm is two, overall time complexity
is O∗(2µ) = O∗(4k). By Theorem 16, the time complexity of IC-FVS is O∗(5k). Hence, FVS has a
time complexity of O∗(5k).

Proof of correctness of the algorithm. For a branching tree T , let (s0, t0) be the maximum
branching terminal pair of T . If PT (s0, t0) ∪ N contains a cycle, from Lemma 19, we know that
there exists an optimal solution containing LCA(s0, to). In other words, (H,N, k′) has the same
solution has {LCA(so, t0)} ∪ (H \ {LCA(s0, t0)}, N, k′ − 1).

If PT (s0, t0) ∪ N does not contain a cycle but has fewer connected components than N , we
can’t say for sure if LCA(s0, t0) is to be added to the solution set or not. If there’s a cycle C
spanning multiple connected components of H − N such that V (C) ∩ V (T ) = PT (s0, t0), then
picking LCA(s0, t0) might not be optimal since C can be also killed by picking vertice(s) from
some other connected component of N . Hence, in addition to deleting LCA(s0, to) and moving it
to the solution set, we branch and move the subtree T ′ rooted at LCA(s0, to) from H −N to N ,
i.e., the solution of (H,N, k′) is same as the solution of (H,N∪T ′, k). Moving T ′ to N is reasonable
because this step has zero cost associated with it, i.e., no vertex added to the solution set.

We now argue that the presented algorithm always terminates. When we add a vertex to the
solution set, k′ decreases by one. When we move a subtree from H−N to N , number of connected
component of N decreases by one. In either case, µ decreases by one.

Note that we could have simply branched without moving subtree rooted at LCA(s, t) to N
but this would not have guaranteed the termination of the algorithm.

We now discuss the base case of this algorithm. Note that µ ≥ 1. The base case occurs when
we call the instance (H,N, 0). If H is a forest, then we return empty set as the solution. Else, no
solution exists. Also, if at any point during the execution of the algorithm, H becomes a forest, no
more vertices need to be added to the fvs and we simply return empty set as the solution.

4 ECT

Currently, the best known algorithm for Even Cycle Transversal problem [21] runs in O∗(50k)
time. Their solution relies on finding a set of vertices six vertices such that there exists an optimal
solution having at least one vertex from this set. We refine their approach and crucially scrutinize
the graph to arrive at a smaller such set of vertices. In this way, we bring down the time complexity
to O∗(10k).

Theorem 23 Even Cycle Transversal can be solved in O∗(10k) time.
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C1

C2

N

Figure 4: Two odd cycles whose union forms an even cycle in C1 ∪ C2 ∪N

To prove Theorem 23, we will present an O∗(9k) algorithm for DISJOINT-ECT. By Theorem 16
and Theorem 15, the time complexity for ECT would be O∗(10k).

We will now focus on the following instance of DISJOINT-ECT: Given a graph H and a subset
N ⊆ V (H) such that both H[N ] and H − N are odd cactus, compute a subset of vertices N ′ ⊆
V (H −N) of size at most k′ which is an ect of H.

We work along the lines of the algorithm described for DISJOINT-FVS and update H −N and
H[N ] such that, each connected component C of H −N is such that: a) there is no even cycle in
the graph C ∪N ; and b) all edges from C are incident in the same connected component of H[N ].

The best way to visualize C is like a tree of odd cycles as shown in Figure 12.
However, unlike the algorithm for DISJOINT-FVS, there might still be even cycles remaining:

let C1 and C2 be two connected components of H −N such that C1 ∪N contains an odd cycle and
C2∪N also contains an odd cycle. If the two odd cycles share more than one vertex in common, by
Lemma 6, there is an even cycle in the induced graph C1∪C2∪N . See Figure 4 for an illustration.
We deal with such cycles using the structure provided after ensuring conditions mentioned in the
previous paragraph.

We call the first part of the algorithm as First Phase and second part, which deletes the even
cycles running across more than one connected component of H −N , as Second Phase.

4.1 First Phase

Definition 24 A vertex of H − N is called a port vertex if it has neighbors in N . A non-port
vertex is a vertex which is not a port vertex.

Let C be a connected component of H −N . Note that C is an odd cactus.

Definition 25 A path P in C is called a branching path if P ∪N has an even cycle in which P is
a subpath or P has adjacencies to more than one connected components of N . It is possible that P
is of length zero (i.e., P may be a single vertex).

12



• • •P

S

b1 b2 b3P3 P1

P2

Figure 5: Branching path in a odd cactus having at least three port vertices

Remark 26 If P is a branching path, then either P ∪ N has even cycle(s) or P ∪ N has fewer
connected components than in N .

Lemma 27 Let C be a connected component of H − N such that there are at least three edges
going from C to N . Then, there exists a branching path P in C. Moreover, P can be computed in
polynomial time.

Proof: Let the three edges going from C to N be incident on port vertices b1, b2 and b3 in C.
Suppose the path joining b1 to b2 in C is P3, b2 to b3 in C is P1 and b3 to b1 in C is P2. If any two
of edges going from b1, b2 or b3 are incident in different connected components of N , then the path
Pi between those vertices is a branching path. Else, it must be the case that all edges are incident
in the same connected component of N . If both P3 and P1 are not branching paths, P3 ∪ N and
P1 ∪N must have only odd cycles. Since the odd cycles in P3 ∪N and P1 ∪N share two vertices in
common (b2 and the neighbor of b2 in N), by Lemma 6, there exists an even cycle in P1 ∪ P3 ∪N .

2

Corollary 28 Let P be a path with three port vertices. Then there exists a subpath P ′ ⊆ P such
that P ′ is a branching path.

Lemma 29 Given an undirected unweighted graph H and two vertices x and y of H, the parities
of all paths between x and y can be determined in polynomial time.

Proof: Construct a new graph H ′ as follows:

V (H ′) = {(v, even), (v, odd) | v ∈ V (H)}
E(H ′) = {((u, even), (v, odd)), ((u, odd), (v, even)) | (u, v) ∈ E(H)}

The idea is to keep track of the parity of path encountered. An even path between two vertices
u and v in H exists iff a path between (u, even) and (v, even) (or, (u, odd) and (v, odd)) in H ′ exists.
Similarly, an odd path between two vertices u and v in H exists iff a path between (u, even) and
(v, odd) (or, (u, odd) and (v, even)) in H ′ exists. 2

13



Lemma 30 Let x and y be two vertices of an odd cactus C. It is possible to find, it it exists, a
path betweeen x and y of a given parity, say par, in polynomial time.

Proof: Let P be the shortest path between x and y in C. If parity of P is par, P is the required
path. Else, if there exists a path of parity par between x and y, P must pass through an odd cycle,
say c, in C. c can be found by considering the block decomposition of C. By switching the vertices
of c in P by the other set of vertices of c, we get a path of parity par. If there does not exist any
such odd cycle c, there does not exist a path of parity par between x and y in C.

2

Note that Lemma 29 talks about existence of a path of a given parity between two vertices in
a graph. Lemma 30 actually constructs a path of a given parity between two vertices in an odd
cactus.

Lemma 31 Let C be a connected component of H − N such that for some connected component
N ′ of N , C ∪ N ′ contains an even cycle or C ∪ N has fewer connected components than in N .
Then there exists a path P such that for some connected component N ′ of N , N ′ ∪ P has an even
cycle in which P is a subpath. Otherwise for any path P ′ in C and any connected component N ′ of
N , P ′ ∪N ′ does not contain an even cycle in which P ′ is a subpath, but there exists a path P such
that N ∪P has fewer connected components than in N . Further, P can be computed in polynomial
time.

Proof: For each pair of edges (b1, c1) and (b2, c2) where b1, b2 ∈ V (C) and c1, c2 ∈ V (N), if there
exists a path P between b1 and b2 and a path Q between c1 and c2 such that P and Q have the
same parity, then P is the desired path.

If no path is found as described above, then select two edges (b1, c1) and (b2, c2) such that
b1, b2 ∈ V (C); and c1 and c2 belong two distinct connected components of N . Then any path P
between b1 and b2 is the required path. 2

Lemma 32 Let x and y be two vertices of a connected component C of H−N . Then, a branching
path P connecting x to y in C can be found in polynomial time, if it exists.

Proof: Let P be a branching path with endpoints x and y. Let P ′ and P ′′ be the parts of P in C
and N respectively. Since P is of even length, P ′ and P ′′ have same parities.

To find P , for all vertices x′ and y′ of N which are neighbor of x and y respectively, check
if there exists a path connecting x to y in C and a path connecting x′ to y′ in N having same
parities. By Lemma 29, the parities of all the paths connecting x to y in C and x′ to y′ in N can
be computed in polynomial time. We can then use Lemma 30 to contruct a path of the required
parity. 2

Definition 33 A simple cactus is a cactus where no vertex belongs to more than one cycle. An
odd simple cactus is a simple cactus which is also an odd cactus.

Note that any simple cactus can be viewed as a tree each of whose nodes are either odd cycles or
a vertex of the orignal simple cactus that does not belong to any cycle. We first give an algorithm
for DISJOINT-ECT problem for the case when H −N is a simple cactus. We will then extend the
solution to the general case.
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Tree representation of a simple cactus. We describe the algorithm for converting a simple
cactus C into a tree T . Let the set of cycles in C be Cyc = {c1, c2, . . . , cm} (can be found in
polynomial time by considering the block decomposition of C [24]). Note that since C is a simple
cactus, each block is either a cycle or K2; and all cycles are vertex disjoint.

The nodes of T are:

V (T ) = {c | c ∈ Cyc} ∪ {u | u is not part of any cycle in C}

The tree T is the result of contracting each cycle c into a node c. We call the nodes of first
type as cycle nodes and the nodes of second type as vertex nodes. Let TC denote the set of cycle
nodes and TV denote the set of vertex nodes. For a node u ∈ V (T ), the notation V (u) denotes
the set of vertices of C present in u, i.e., V (u) = V (u) if u is a cycle in C and {u} otherwise. For
completeness, we define the edges of the tree as well:

E(T ) ={(n1, n2) | u, v ∈ TV , (u, v) ∈ E(C)} ∪
{(n1, n2) | n1 ∈ TC , n2 ∈ TV ,∃ u ∈ V (n1) s.t. (u, n2) ∈ E(C)} ∪
{(n1, n2) | n1, n2 ∈ TC ,∃ u ∈ V (n1) ∃ v ∈ V (n2) s.t. (u, v) ∈ E(C)}

Let r be the root node of T chosen arbitrarily. Additionally, we introduce a function λ : V (T )→
E(C) which maps the edges from E(T ) to the corresponding edge in E(C). Let v be the parent of
a node u. λ(u) is defined as follows:

λ(u) =


(u, v) if u ∈ TV and v ∈ TV
(u, x) if u ∈ TV , v ∈ TC and ∃ x ∈ V (v) s.t. (u, x) ∈ E(C)

(x, v) if u ∈ TC , v ∈ TV and ∃ x ∈ V (u) s.t. (x, v) ∈ E(C)

(x, y) if u ∈ TC , v ∈ TC and ∃ x ∈ V (u) ∃ y ∈ V (v) s.t. (x, y) ∈ E(C)

Moreover, for a node u with λ(u) = (x, y), we use λ(u)1 to deonote x and λ(u)2 to denote y.
For the root node r, λ(r)1 is chosen arbitrarily if r is a cycle node. If r is a vertex node, λ(r)1 = r.
Note that λ(r)2 is undefined.

Image of the branching path P into tree T . Observe that all the vertices of a cycle in P
must occur consecutively. Otherwise, P will have to retrace an edge, which is not allowed in a
path. By replacing all the vertices of a cycle c in P by c, we get a path in T . This path will be
denoted by img(P ).

Representative node and depth of a branching path. Let P be a path in the simple cactus
C such that img(P ) = n1n2 . . . nm. The representative node of P , denoted by rep(P ), is the node
with minimum depth in img(P ). The depth of P , denoted by depth(P ), is the depth of rep(P ).

Classification and decomposition of a branching path. Suppose we have a branching
path P = p1p2 . . . pt with img(P ) = n1n2 . . . nm. such that rep(P ) = nr. We classify the branching
path P as follows:
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Figure 6: When λ(rep(P )) ∈ V (P ), P can be decomposed as p1P1pi0P2pt where pi0 = λ(rep(P ))1.
P is an upper branching path . Asterisk marked vertices are part of P and textbullet marked
vertices do not participate in P .

• nr ∈ TC . Let pi1pi1+1 . . . pi2 be the part of P present in node ni, i.e., V (P ) ∩ V (ni) =
pi1pi1+1 . . . pi2 .

– If ∃i0 : i1 ≤ i0 ≤ i2 s.t. pi0 = λ(ni)1, P is called a upper branching path. P can be
decomposed as p1P1pi0P2pt.

– Otherwise, P is called a lower branching path. P can be decomposed as p1P1pi1P0pi2P2pt.

• If nr ∈ TV , then also P is called an upper branching path. P can be decomposed as
p1P1niP2pt.

The above three cases have been described pictorially in Figure 6, 7 and 8 respectively.

Partial order on the set of branching paths. We now define a partial ordering, C, on the
set of branching paths BP . Let Pa and Pb be two branching paths.

• If Pa is a subpath of Pb, then Pb C Pa. [Case 1]

• If rep(Pa) lies in a subtree rooted at rep(Pb) and rep(Pa) 6= rep(Pb), then Pb C Pa. [Case 2]

• If rep(Pa) = rep(Pb), then:
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Figure 7: When λ(rep(P )) /∈ V (P ), P can be decomposed as p1P1pi1P0pi2P2pt where pi1 and pi2
are the extreme vertices of P occurring in rep(P ). P is a lower branching path . Asterisk marked
vertices are part of P and textbullet marked vertices do not participate in P .
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Figure 8: When rep(P ) ∈ TV , P can be composed as p1P1niP2pt where pi0 = λ(rep(P )). This case
is similar to the previous case. P is an upper branching path .
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Figure 9: When both Pa and Pb have same representative node but Pb is a upper branching
path whereas Pa is a lower branching path , Pb C Pa.

– If Pa is a lower branching path and Pb is a upper branching path, then Pb C Pa (Figure 9).
[Case 3a]

– If both Pa and Pb are lower branching path and the set of vertices of Pa present in
rep(Pa) is a strict subset of the set of vertices of Pb present in rep(Pb)(= rep(Pa)), i.e.,
V (Pa) ∩ V (rep(Pa)) ( V (Pb) ∩ V (rep(Pb)), then Pb C Pa (Figure 10). [Case 3b]

Remark 34 C is a partial ordering.

Definition 35 A branching path P is called a maximal branching path if there does not exist a
branching path P ′ such that P C P ′.

Starting with a branching path P0, our aim is to move towards a maximal branching path P .

Lemma 36 Given a branching path Pa, we can find, in polynomial time, a branching path Pb such
that Pa C Pb if such a branching path exists.

Proof:
A branching path Pb such that Pa C Pb must satisfy at least one of the four rules.

Case 1 Suppose there exists a branching path Pb which is a subset of Pa = p1p2 . . . pt. To find Pb,
for each i ≤ j, check if pipi+1 . . . pj is a branching path.

Case 2 Suppose there exists a branching path Pb such that rep(Pb) lies in the subtree rooted at
rep(Pa) and depth(Pa) < depth(Pb), i.e., rep(Pb) is a strict descendant of rep(Pa). For any
child node of rep(Pa) in T , say nr, let Cr be the sub-cactus corresponding to the subtree
rooted at nr. Find if Cr contains a branching path using Lemma 31. Repeat this process for
each child node of rep(Pa).
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Figure 10: When both Pa and Pb are lower branching path with the same representative node, n,
such that vertices of Pa in n is a strict subset of vertices of Pb in n, then Pb C Pa.

Case 3a Suppose there is a branching path Pb of same depth as that of Pa such that Pb is a lower
branching path and Pa is an upper branching path. We assume that there does not exist a
branching path P ′ such that Pa C P ′ by Case 1 or Case 2. Else, we can find a new branching
path P ′ such that Pa C P ′ (by Case 1 or Case 2).

Let T ′ be the tree rooted at rep(Pa). Obviously, Pb must be a branching path in T ′ which does
not pass through λ(rep(Pa))1. See Figure 9. To find Pb, use Lemma 31 to find a branching
path in the graph T ′ − {λ(rep(Pa))1}.

Case 3b Suppose Pa is a lower branching path and there exists a lower branching path Pb with
the same representative node, n, such that the set of vertices of Pb in n is a strict subset of
the set of vertices of Pa in n, i.e., V (Pb) ∩ V (n) ( V (Pa) ∩ V (n). Like the previous case, we
assume that there does not exist a branching path P ′ such that Pa C P ′ by Case 1, Case 2 or
Case 3a. Else, we can find a new branching path P ′ such that Pa C P ′ (by Case 1, Case 2 or
Case 3a).

Suppose Pa = p1p2 . . . pt such that the part of P in its representative node is pipi+1 . . . pj , i.e.,
V (Pa)∩ V (n) = {pi, pi+1, . . . , pj}. Let T ′ be the subtree rooted at n. As shown in Figure 10,
Pb must lie in the subgraph T ′′ := (T ′ − V (n)) ∪ {pi, pi+1, . . . , pj}. However, Pb can not pass
through both pi and pj . To find Pb, use Lemma 31 to a branching path either in the graph
T ′′ − {pi} or in the graph T ′′ − {pj}.

Each of the above four steps can be done in polynomial time. 2

If C is a connected component of H − N such that C ∪ N has an even cycle or C ∪ N has
fewer connected components than in N , then, by Lemmas 31 and 36, we can compute a maximal
branching path in polynomial time.
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Properties of a maximal branching path. Recall that a port vertex is a vertex in C which
has neighbors in N . Denote the set of port vertices by B. For a path P in C, let EP denote the
endpoints of P and BP denote the set of port vertices in P , i.e., BP := B ∩ V (P ).

Lemma 37 If P is a maximal branching path, EP ⊆ BP .

Proof: Follows by the definition of branching paths. In fact, Lemma 37 is true for all branching
paths. 2

Lemma 38 If P is a maximal branching path, |BP | ≤ 3.

Proof: Suppose P is such that |BP | > 3. Let b1, b2, b3 ∈ BP be three vertices which are consecutive
when ordered by P . By the construction proposed in Lemma 27 and using Corollary 28, it’s clear
that the new branching path P ′ computed is a strict subpath of P . Hence, by Case 1, P C P ′

contradicting the fact that P is maximal. 2

If P = p1p2 . . . pt is a lower branching path, P can be decomposed as p1P1pi1P0pi2P2pt. We
define three sets X0, X1 and X2 for P0, P1 and P2 respectively:

X0 ={p | p ∈ V (P0), there exists a path from p to N in the graph C \ (P0 ∪ {pi1 , pi2}) ∪ {p} ∪N }
X1 ={p | p ∈ V (P1), there exists a path from p to N in the graph C \ (P1 ∪ {p1, pi1}) ∪ {p} ∪N }
X2 ={p | p ∈ V (P2), there exists a path from p to N in the graph C \ (P2 ∪ {pi2 , pt}) ∪ {p} ∪N }

Similary, for a upper branching path P = p1p2 . . . pt which can be decomposed as p1P1pi0P2pt,
we define X1 and X2 analogously.

X1 ={p | p ∈ V (P1), there exists a path from p to N in the graph C \ (P1 ∪ {p1, pi0}) ∪ {p} ∪N }
X2 ={p | p ∈ V (P2), there exists a path from p to N in the graph C \ (P2 ∪ {pi0 , pt}) ∪ {p} ∪N }

The best way to think as X1, X2 and X0 as are “points of escape” from P1, P2 and P0 to N
respectively.

Corollary 39 Let P be a lower branching path whose decomposition is p1P1pi1P0pi2P2pt.

• For all vertices v ∈ X0, v is connected to a port vertex bv ∈ B \ {pi1 , pi2} by a path which
does not intersect P0 ∪ {pi1 , pi2}.

• For all vertices v ∈ X1, v is connected to a port vertex bv ∈ B \ {p1, pi1} by a path which does
not intersect P1 ∪ {p1, pi1}.

• For all vertices v ∈ X2, v is connected to a port vertex bv ∈ B \ {pi2 , pt} by a path which does
not intersect P2 ∪ {pi2 , pt}.

Let P be a upper branching path whose decomposition is p1P1pi0P2pt.

• For all vertices v ∈ X1, v is connected to a port vertex bv ∈ B \ {p1, pi0} by a path which does
not intersect P1 ∪ {p1, pi0}.
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• For all vertices v ∈ X2, v is connected to a port vertex bv ∈ B \ {pi0 , pt} by a path which does
not intersect P2 ∪ {pi0 , pt}.

Lemma 40 Let P be a maximal branching path. Then |X1| ≤ 1, |X2| ≤ 1 and |X0| ≤ 1.

Proof: Suppose X1 contains at two vertices. Let pa, pb ∈ X1 be two vertices which are consecutive
when ordered by P1. By Corollary 39, pa is connected to a port vertex ba by path Pa and pb
is connected to a port vertex bb by path Pb. Consider the graph Pa ∪ Pb ∪ P1 ∪ {b1} connecting
{ba, bb, p1} which satisfies the conditions of Lemma 27. Hence, there exists a branching path P ′

in Pa ∪ Pb ∪ P1 ∪ {p1}. If P is a lower branching path, depth of P ′ is strictly greater than that
of P and by Case 2, P C P ′ contradicting the maximality of P . If P is a upper branching path,
either P ′ passes through rep(P ) or it does not. If P ′ pass through rep(P ), it does not pass through
λ(rep(P ))(= pi0). Hence, P ′ is a lower branching path and by Case 3a, P C P ′ contradicting the
maximality of P . If P ′ does not pass through rep(P ), depth of P ′ must be strictly greater than
depth of P and by Case 2, P C P ′ contradicting the maximality of P . In any case, we have found
a new branching path P ′ with depth greater than that of P which contradicts the maximality of
P .

We can argue similarly for X2 as well.
For X0, let pa, pb ∈ X0 be two vertices which are consecutive when ordered by P0 (i1 ≤ a ≤ b ≤

i2, i.e., pa is closer to pi1 than pb). By Corollary 39, pa is connected to a port vertex ba by path Pa
and pb is connected to a port vertex bb by path Pb. Consider the graph Pa ∪Pb ∪P1 ∪P0 ∪{p1, pi0}
connecting {ba, bb, p1} which satisfies the conditions of Lemma 27. Hence, there exists a branching
path P ′ in Pa ∪ Pb ∪ P1 ∪ P0 ∪ {p1, pi0}. Since V (P ′) ∩ V (rep(P ′)) is either pi1pi1+1 . . . pa or
pi1pi1+1 . . . pb or papxa+1 . . . pb each of which is a strict subset of pi1pi1+1 . . . pi2 = V (P )∩V (rep(P )),
by Case 3b, P C P ′ contradicting the fact that P is maximal. 2

Lemma 41 Let P be a maximal branching path. There exists an optimal solution S such that
S ∩ V (P1) ⊆ X1, S ∩ V (P2) ⊆ X2 and S ∩ V (P0) ⊆ X0.

Proof: Let X1 = {x1} and v ∈ V (P1) \X1 be a vertex in S. Suppose v lies between p1 and x1. If
all branching paths passing through v pass through p1 or x1 as well, replace v by two vertices p1
and x1 in S. Else, there exists a branching path P ′ entering P at y and leaving P at z such that
y is between p1 and v; and z is between v and x1. By Case 2, P C P ′. When v lies between x1
and pi1 (pi0) for a lower (upper, respectively) branching path P , we can argue similarly using Case
2 and Case 3a. This contradicts the fact that P is maximal.

We can argue similarly for X2, P2 as well.
Let X0 = {x0} and v ∈ V (P0) \ X0 be a vertex in S. Suppose v lies between pi1 and x0. If

all branching paths passing through v pass through pi1 or x0 as well, replace v by two vertices pi1
and x1 in S. Else, there exists a branching path P ′ entering P at y and leaving P at z such that
y is between pi1 and v; and z is between v and x0. By Case 3b, P C P ′. When v lies between x0
and pi2 for a lower branching path P , we can argue similarly. This contradicts the fact that P is
maximal. 2

Lemma 42 Let P be a maximal branching path. There exists an optimal solution S such that

S ∩ V (P ) ⊆

{
X0 ∪ {pi1 , pi2} if P is a lower branching path

{pi0} if P is an upper branching path
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Proof: Let X1 = {x1}, X2 = {x2}, X0 = {x0} (By Lemma 40). Using Lemma 41, we can say that
there exists a solution that S such that S ∩ V (P ) ⊆ {p1, x1, pi1 , x0, pi2 , x2, pt} when P is a lower
branching path and S ∩ V (P ) ⊆ {p1, x1, pi0 , x2, pt} when P is a upper branching path. Suppose
x1 ∈ S.

If P is a lower branching path, any branching path P ′ passing through x1 must also pass through
pi1 or P C P ′ by Case 2 contradicting the fact that P is a maximal branching path.

Suppose P = p1p2 . . . pt is a upper branching path. Let pi1 and pi2 be the points of incidence
of P in rep(P ) (i1 ≤ i0 ≤ i2), i.e., V (P ) ∩ V (rep(P )) = pi1 . . . pi0 . . . pi2 . Any branching path P ′

passing through x1 must also pass through pi1 since P is maximal (Case 2). If P ′ is a upper
branching path, x1 can be replaced by pi0 . P ′ can’t be a lower branching path because if P ′ is a
lower branching path, P C P ′ by Case 3a contradicting the fact the P is maximal.

The same argument applies to p1 as well.
Similarly, we can argue for x2 and pt as well. 2

Lemma 43 Let P be a maximal lower branching path. There exists an optimal solution S such
that S ∩ V (P ) ⊆ {pi1 , pi2}.

Proof: Let X0 = {x0} (By Lemma 40). By Lemma 42, we can say that there exists a solution S
such that S ∩ V (P ) ⊆ {x0, pi1 , pi2}. Suppose x0 ∈ S. Let P = p1 . . . pi1 . . . pi . . . pi2 . . . pt be such
that pi = x0. If a branching path passing through pi also passes through pi1 or pi2 , we can replace
pi by pi1 and pi2 in S. Else, there exists a branching path P ′ is such that it enters P at pi′1 and
leaves P at pi′2 such that i1 < i′1 ≤ i ≤ i′2 ≤ i2 or i1 ≤ i′1 ≤ i ≤ i′2 < i2. Then, by Case 3b, P C P ′

which contradicts the fact that P is maximal. 2

Starting from the branching path P0 obtained in Lemma 31, we can repeatedly apply Lemma 36
till we obtain a maximal branching path P ′ which satisfies Lemma 37, 38, 40, 41, 42 and 43. Then
there exists an optimal solution S such that S∩V (P ) ⊆ {pi1 , pi2} if P is a lower branching path and
S ∩ V (P ) ⊆ {pi0} if P is an upper branching path.

If P is a maximal lower branching path, we branch in the following way: a) Deleting pi1 from
C and adding it to the solution set; b) Deleting pi2 from C and adding it to the solution set;
or c) Moving P to S. If P is a maximal upper branching path, we branch in the following way:
a) Deleting pi0 from C and adding it to the solution set; or b) Moving P to S.

Note that P can be such that P ∪ S does not have any even cycles but P has adjacencies to
more than one connected component of S. In this case, moving a vertex to the final solution set
might not be the optimal step. Instead, we move the whole of P to S as this step has a zero cost
associated with it. The jusfication for this step is provided when we discuss the proof of correctness
of this algorithm.

As long as a connected component C satisfies the conditions of Lemma 31, we branch on the
vertices of a “maximal” branching path P of C. We do this for all connected components of H−N .
At the end, all the connected components C are such that: a) C ∪N does not have even cycles;
and b) C has adjacencies to only one connected component of N .

Further more, using Lemma 27, the following corollary follows:

Corollary 44 If a connected component C is such that C ∪N does not have any even cycles and
C has adjacencies to only one connected component of N , C has at most two edges going to N ,
i.e., |B| ≤ 2.
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4.2 Second Phase

At the beginning of the second phase, we have the following facts: for every connected component
C of H −N , C ∪N does not have any even cycles and all edges from C to N are incident on the
same connected component of N .

The even cycles still left to be dealt with are those which pass through multiple connected
components of H −N . Also, if a connected component C of H −N is such that there exists only
one edge from C to N , C can be ignored because it can never participate in any such cycle.

The following corollary follows directly from Corollary 44:

Corollary 45 From every connected component C of H − N , there are at most two edges going
from C to N .

Recall that BC denotes the set of port vertices of a connected component C of H −N .

Lemma 46 There exists an optimal solution S0 such that for every connected component C of
H −N , S0 ∩ V (C) = ∅ or S0 ∩ V (C) = {x} for any x ∈ BC .

Proof: Let S′0 be an optimal solution. Let C be some connected component of H−N and x ∈ BC .
Suppose v ∈ V (C) ∩ V (S0). Note that |BC | ≤ 2. If v /∈ BC , any even cycle passing through v also
passes through x. Hence, v can be replaced by x in S′0. 2

Lemma 47 Let Q1, Q2, . . . , Ql be pairwise vertex disjoint paths in a connected graph G′. Then,
for some i, j ∈ [l], there exists a path Q joining Qi and Qj which is vertex disjoint from Qk for all
k ∈ [l] \ {i, j}.

Proof: For some i ∈ [l], let u be a vertex of Qi. Let v be the nearest vertex from u which belongs
to Qj for some j ∈ [l] \ {i}. Let the shortest path connecting u and v be Q = uv1v2 . . . vtv. Let
va be the last vertex of P in Pi, i.e., va ∈ v(Qi) and for all b > a : vb /∈ V (Qi). Then the path
vava+1 . . . vtv joining Qi and Qj is the required path. 2

Lemma 48 If there’s a cycle in H passing through l (l ≥ 3) connected components of H−N , then
there is a cycle passing through at most l − 1 connected components of H −N .

Proof: Suppose a cycle c passing through l connected components C1, C2, . . . , Cl of H − N . For
i ∈ [l], let ci be the part of c in Ci. c can then be decomposed as c1n1c2n2 . . . clnl where n1, n2, . . . , nl
are pairwise disjoint from each other. See Figure 11. Here, n1, n2, . . . , nl lie in the same connected
component of N because edges from Ci’s are incident in the same connected component of N . Also,
all ci’s lie in different connected components of H − N because each connected component C of
H −N has at most two edges from C to N .

By Lemma 47, for some ni and nj (i < j), there exists a path s joining ni and nj which is
disjoint from nk for all k ∈ [l] \ {i, j}. Let ni = ui . . . ua . . . vi and nj = uj . . . ub . . . vj be such that
s is of the form ua . . . ub. Then, the cycle c′ = c1n1 . . . ci ui . . . ua s ub . . . vj cj+1 . . . nl bypasses
ci+1, ci+2, . . . , cj and hence passes through at most l − 1 connected components of H −N . 2

Corollary 49 If there’s a cycle in H passing through l (l ≥ 3) connected components of H − N ,
there is a cycle passing through at most two connect components of H −N .
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Figure 11: Thick line indicates the original cycle c. The intermediate path is substituted by the
dashed path s.

Lemma 50 If there’s a cycle passing through two connected components C1 and C2 of H − N ,
there is an even cycle in C1 ∪ C2 ∪N .

Proof: Suppose a cycle c passes through only C1 and C2. If c is even, then the claim is trivially
true. So assume that c is an odd cycle. Similar to the previous lemma, for i = 1, 2, let ci be the
part of c occurring in C1. c can then be decomposed as c1n1c2n2. By Lemma 47, there exists a
path s joining n1 and n2 in N . There are now two cycles: one in c1 ∪ n1 ∪ n2 ∪ s and the other in
c2∪n1∪n2∪s both of which have s in common. By Lemma 6, there is an even cycles in c1∪c2∪N .

2

Let C1, C2 . . . Cl be the different connected components of H −N . Define Cij = Ci ∪Cj and Bi
to be the set of port vertices of Ci. Given some i0 and j0, any even cycle passing in Ci0j0 ∪N must
pass through all the vertices of Bi0 ∪Bj0 . As |Bi0 | ≤ 2 and |Bj0 | ≤ 2, by Lemma 46, we have a two
way branching algorithm to delete even cycles in Ci0j0 . We do this for all possible pairs (Ci, Cj).

If there are no even cycles in Ci∪Cj∪N for all i, j ∈ [l], by Lemma 50, there are no cycles passing
through two connected components of H −N . Hence, by Lemma 48, no cycle passes through more
than two connected components of H−N . Even cycles passing through two connected components
have already been dealth with. Also, even cycles passing through one connected component have
also been dealth with. Hence, there’s no even cycle in the graph.

4.3 Analysis

Time complexity of the algorithm. To analyze the time complexity of the algorithm, we look
at the measure

µ = k + number of connected components of N

At the beginning of the algorithm, µ ≤ 2k. First phase has a branching factor of three whereas
second phase has a branching factor of two. Overall, it’s a three way branching algorithm. Hence,
time complexity of DISJOINT-ECT is O∗(32k) = O∗(9k).

By Theorem 16, IC-ECT will have time complexity O∗(10k). Hence, ECT can be solved in time
O∗(10k)
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Figure 12: An odd cactus. v1, v2, v4, v6, v7, v8, v9, v10, v11 are unique vertices and v3, v5 are non-
unique vertices. v1, v2, v3, v5, v6, v7, v10, v11 are cycle vertices and v4, v8, v9 are non-cycle vertices.

4.4 Transformation from a cactus to a simple cactus.

Definition 51 A vertex of a cactus is called a unique vertex if it belongs to at most one cycle. A
non-unique vertex of a cactus is a vertex which is not a unique vertex.

Non-unique vertices are the vertices which are common to two or more cycles in a cactus. See
Figure 12 for an illustration.

Remark 52 A simple cactus is a cactus each of whose vertex is a unique vertex.

If some connected component C of H −N is such that it is not a simple cactus, we describe a
transformation that converts C to a simple cactus C ′ such that the algorithm described above still
works.

We first give an informal idea of construction by means of Figure 13. As shown in the figure, let
v be a non-unique vertex occurring in multiple cycles of C. Let the blocks of C in which v occurs
be b1, b2, . . . , b5. Then, for each block bi, we keep a copy of v - say vi. Furthermore, we connect
each of these vi’s to a new vertex v′. The idea is to preserve the parity of paths going via. v into
different blocks: a path going from bi to bj via. v would now traverse following sequence of vertex:
viv
′vj . If a path via. v remains in a single block bi, v is simply replaced by vi in the new path.
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Figure 13: Transformation of C to C ′

Also, if v is a port vertex, only one of v1, v2, . . . , v5 will be a port vertex. v′ can not be a port
vertex since it would not preserve the parity of branching paths. If all of vi’s are port vertices, one
single branching path would have multiple images. Hence, one of vi’s is chosen arbitrarily to be a
port vertex.

Suppose the block decomposition of C yields the set of blocks B = {b1, b2, . . . , bm} [24]. We
define two functions, blocks : V (C)→ 2B and block : E(C)→ B which determines the set of blocks
(block) a vertex (an edge, recpectively) occurs in.

blocks(v) = {bi | v ∈ V (bi)}
block(e) = bi if e occurs in block bi

C ′ is defined formally as follows:

V (C ′) =
{
vi1 , vi2 , . . . , vim′ , v

′ | v ∈ V (C), blocks(v) = {bi1 , bi2 , . . . , bim}
}

E(C ′) =
{

(ui, vi) | (u, v) ∈ E(C), block((u, v)) = bi
}
∪{

(vi1 , v
′), (vi2 , v

′), . . . , (vim , v
′) | v ∈ V (C), blocks(v) = {bi1 , bi2 , . . . , bim}

}
Remark 53 If v ∈ V (C) is a unique cycle vertex which occurs in only one block, v′ ∈ V (C ′) will
have only one neighbor, which is v. Hence, v′ won’t be part of any branching path in C ′.

We can now describe the edges going across C ′ to N , i.e., the port vertices of C ′. If a port
vertex v is such that blocks(v) = {bi1 , bi2 , . . . , bim}, only one of vij ’s can be a port vertex. Without
loss of generality, assume it to be vij . We say that vij is the minimal image of v.

The edges, E, going across C ′ to N are:

E = {(vi, s) | v ∈ V (C), s ∈ V (N), (v, s) ∈ E(C ∪N), vi is the minimal image of v}

Corollary 54 Both C and C ′ have the same number of port vertices.
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Corollary 55 If vi ∈ V (C ′) is a port vertex, v ∈ V (C) is also a port vertex.

Remark 56 No port vertex of C ′ is of the form v′.

Let P denote the set of paths of C and P ′ denote the set of paths of C ′ which start or end at
vertices of the form vi such that vi is the minimal image of some v ∈ V (C).

Lemma 57 There exists a bijection between P and P ′ which is parity preserving.

Proof: We present a construction mapping a path P ∈ P to P ′ ∈ P ′. Any unique vertex v of P
are replaced by vi where blocks(v) = {bi}. For a non-unique vertex v of P such that P switches
from block bi to bj , v is replaced by viv

′vj in P ′. If block remains the same while traversing v, say
bi, v is simply replaced by vi.

It is easy to see that the above mapping is a parity preserving bijection. 2

Let BP denote the set of branching paths in C and BP ′ denote the set of branching paths of
C ′. As an immediate application of Lemma 57, we have the following corollary:

Corollary 58 There exists a parity preserving bijective mapping between BP and BP ′.

For a non-simple cactus C, we first change it to a simple cactus C ′ and determine the set of
minimal vertex set (i.e., either {pi0} or {pi1 , pi2}) by decomposition of a maximal branching path P ′

of C ′ For all vertices from this minimal set, we delete its inverse image from C and recursively call
the new instance. The only remaining case is when we move the maximal branching path to N . In
this case, we move the inverse image of P ′ in C to N .
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Figure 14: Graph transformation of C → C ′ → T . The first graph is C. The second graph
(omitting red lines) is C ′. The red boxes indicate each of the node of the tree T . The black edges
running across the red boxes are the edges of tree T .
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