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Abstract

In an unpublished manuscript, Alan Turing used an unproven lemma to give a construction
of absolutely normal numbers. A proof for the weaker version of the lemma was provided by
Becher et al in 2007 and they showed that the construction still holds. In this paper, we provide a
proof of a lemma using Talagrand’s concentration inequality which is stronger than that proved
by Becher et al but weaker than Turing’s hypothesis.



Introduction
Given a string a = (a0a1 · · · a3n−1) is given and a pattern p = (p1p2p3) where the alphabet is
the set {0, 1}, consider the following two sets:

1. S1 = {i|a3ia3i+1a3i+2 = p1p2p3}

2. S2 = {i|aiai+1ai+2 = p1p2p3}

We are interesting in finding the expected size of S1 and S2 and also the probability that the size
of S1 or S2 deviates from the expected size.

For the expected size,

For problem 1, define a random variable Xi as follows:

Xi =

{
1 if i ∈ S1

0 otherwise

Obviously, 0 ≤ i ≤ (n− 1). Also, let X be the total number of matches. Then

X =
n−1∑
i=0

Xi ⇒ E[X] = E[
n−1∑
i=0

Xi]⇒ E[X] =
n−1∑
i=0

E[Xi] =
n−1∑
i=0

1

8
=
n

8

The above equation follows by applying Linearity of Expectations and from the fact thatE[Xi] =
1
8
. Hence, E[X] = n

8
.

For the second problem, define the random variable Yi in a similar way.

Yi =

{
1 if i ∈ S2

0 otherwise

Obviously, 0 ≤ i ≤ (3n− 3). Also, let Y be the total number of matches. Then

Y =
3n−3∑
i=0

Yi ⇒ E[Y ] = E[
3n−3∑
i=0

Yi]⇒ E[Y ] =
3n−3∑
i=0

E[Yi] =
3n−3∑
i=0

1

8
=

3n− 2

8

Here also, the above equation follows by applying Linearity of Expectations and from the fact
that E[Yi] = 1

8
. Hence, E[Y ] = 3n−2

8
.

Next comes the bigger question, a bound on the probability of deviation from the expected
value of n?

For the first question, it can be found using Chernoff’s Bound. Note that the variables Xi’s
defined above are Bernoulli Random Variables independent of each other. Also, µ = n

8
(already

shown above).

Using Chernoff’s Bound
Pr[X ≤ (1− δ)µ] ≤ e−µδ

2/2

Pr[X ≥ (1 + δ)µ] ≤ e−µδ
2/4
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Hence,
Pr[|X − µ| ≥ δµ] = Pr[(X ≤ (1− δ)µ) ∪ (X ≥ (1 + δ)µ)]

= Pr[X ≤ (1− δ)µ] + Pr[X ≥ (1 + δ)µ] ≤ e−µδ
2/2 + e−µδ

2/4 ≤ 2e−µδ
2/2

In our case, µ = n
8
. This gives us an inverse exponential bound.

However, for the second case, there is no direct method to get a concentration bound. Cher-
noff’s Bound won’t work because Yi’s are not independent. There is no trivial way to get a
concentration bound of the deviation of Y . Turing claimed a similar kind of bound for Y as
well but didn’t prove it. In 2007, [1] proved a lower bound for the same inequality and showed
that the proof where this inqquality was used is still valid with the weaker inequality. The
method used by used was very complicated and involved rigorous combinatorics arguments. In
this paper, we give a stronger bound on the inequality using application of Talagrand’s Inqeual-
ity.

Turing’s Lemma
Definition Let t ∈ N, r ∈ N & γ ∈ {0, 1}r. Then,

1. S(w, γ) is the number of occurences of γ in w

2. P (t, γ, n,R) = {w ∈ {0, · · · , t− 1}R : S(w, γ) = n}

3. N(t, γ, n,R) = #P (t, γ, n,R)

The function N returns the number of R length strings that have n occurrences of γ. This is
not a trivial function due to the possible overlapping of different occurences of γ. For example,
if γ = 11 it occurs once in 1100, twice in 0111 and three times in 1111. Hence the event of γ
matching the r length substring at position i is not independent of the event that γ matches(or
not matches) the r length substring at position i − r + 1 · · · i + r − 1. Hopefully, if we only
consider the exact number of occurences of a given digit, the expression for N becomes simple:
in the scale of t, there are only (t − 1)R−n R-length words with exactly n occurences of the
digit d in fixed places. Hence, the number of words of length R in the base t with exactly n
occurrences of the digit d in some places is

N(t, d, n, R) =
(
R
n

)
(t− 1)R−n

Obviously, ∑
0≤n≤RN(t, d, n, R) = tR

Unproved Turing’s Lemma. Let t ∈ N, r ∈ N & γ ∈ {0, 1}r, and let δ ∈ R be such that
δ t

r

R
< 0.3. Then, ∑

|n−R/tr|>δN(t, γ, n,R) < 2tRe−
δ2tr

4R

Pr[|n− R
tr
| > δ] < 2e−

δ2tr

4R

Becher et al gave a substitution for the unproved Turing’s Lemma which is
Lemma. Let t ∈ N, r ∈ N & γ ∈ {0, 1}r, and let ε be such that 6

bR
r
c ≤ ε ≤ 1

tr
. Then,

∑
|n−R/tr|≥εRN(t, γ, n,R) < 2tR+2r−2re−

trε2R
6r
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As already mentioned, the above result involved fairly complicated combinatorial agruments.

Before going into the exact statement of Talagrand’s Inequality, it’s imperative to define
Convex Distance.

Convex Distance
• ∀ r ∈ [−1, 1]N & α ∈ {0, 1}N

We say that α supports r if

ri 6= 0⇒ αi = 1 i = 1m · · · , N

(αi = 0⇒ ri = 0 ∀i)

• A,X ⊆ [−1, 1]N . The Combinatorial Support

uA(X) = {α ∈ {0, 1}N |∃x ∈ X − A s.t. α supports x}

• Combinatorial Hull
VA(X) = Convex Hull of uA(X)

• Convex Distance
dc(X,A) is the distance of the combinatorial hull VA(x) from origin.

Talagrand’s Inequality
In its purest form, the inequality is :
Let Ω = Ω1 × Ω2 × · · ·Ωn be a probability measure product space. If A ⊆ Ω, then for any
t ≥ 0,

Pr[A].P r[Āt] ≤ e−t
2/4

where At is the annulus of radius t around the figure A and Āt is its complement.

At = {x ∈ Ω : (A, x) ≤ t}

In the above equation, is the Talagrand’s Convex Distance not the normal Euclidean Distance.

The above inequality can also be stated as follows:
LetX0, X1,· · · , XN be random variables and F : RN → R be a function such that the following
holds:

1. ∀ i ∈ {1, 2, , N} |Xi| ≥ 1

2. Xi are mutually independent

3. F is convex i.e.
Let ~r1, ~r2 ∈ RN . F is convex if

F
( ~r1 + ~r2

2

)
≤ F (~r1) + F (~r2)

2
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4. F is co-ordinate wise 1−Lipschitz i.e.

∀ i = 1, · · · , N |F ( ~X−i, x)− F ( ~X−i, y)| ≤ |x− y|
keeping all variables except ith intact.

Then the following result holds:

1. ∃ c > 0 s.t. ∀λ
P [ω : |F (ω)−MF | ≥ λ] ≤ ce−cλ

2

where M is the median of F .

2. ∃ c > 0 s.t. ∀λ
P [ω : |F (ω)− EF | ≥ λ] ≤ ce−cλ

2

where E is the expectation of F .

Proof :
It suffices to show that for any convex set A ⊆ DN (unit disk in N−dimensions)

0. Eecd
2(X,A) ≤ 1

P [ω : X(w) ∈ A]

It suffices to show that 0⇒ 1 and 1⇒ 2.
1 ⇒ 2 is straightforward because mean and expectation of a function don’t differ much which
can be reflected in the constant on RHS.

We need to show
P [F ( ~X) ≤ x].P [F ( ~X) ≥ y] ≤ e−c|x−y|

2

The first term P [F ( ~X) ≤ x] can be visualized as a set A which is defined as follows:

A : {~z ∈ RN : F (~z) ≤ x}
SinceF is convex, hence A is also convex.
⇒We need to prove

ec|x−y|
2

P [F (~x) ≥ y] ≤ 1

P [x ∈ A]

If we show that
ec|x−y|

2

P [F (~x) ≥ y] ≤ E[ecd
2
m(X,A)]

Then using 0 i.e E[ecd
2
m(X,A)] ≤ 1

P [x∈A] , we get

ec|x−y|
2

P [F (~x) ≥ y] ≤ 1

P [x ∈ A]

Hence, we need to show
ec|x−y|

2

P [F (~x) ≥ y] ≤ E[ecd
2
m(X,A)]

Note that

ec|x−y|
2

P [F (~x) ≥ y] ≤ E[ecd
2
m(X,A)] + ec|x−y|

2

P [F (~x) ≥ y] = E[ec(x−y)
2

]

If F is 1−Lipschitz,
|F (~x)− F (~y)| ≤ |~x− ~y|

⇒ |~x− ~y| ≤ |F−1(~x)− F−1(~y)|
Hence, we can say that E[ec(x−y)

2
] ≤ E[ecd

2
n(X,A)].

This implies
ec|x−y|

2

P [F (~x) ≥ y] ≤ E[ecd
2
m(X,A)]

This completes the proof of Talagrand’s Inequality.
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Certifiable Functions
Let f(x1, · · · , xn) be a real valued function on a product space Ω =

∏
i ∈ [n]Ωi. Function f is

r-certifiable if for every x = (x1, · · · , xn) ∈ Ω, there exists a set of indices J(x) ⊆ [n] s.t.

• |J(x)| ≤ r × f(x)

• if y agrees with x on the co-ordinates in J(x),then f(y) ≥ f(x)

The set J(x) is said to be a certificate for J(x)
For example,let f be the number of heads in n coin tosses. We can consider the following

certificate for f
J(x) = {i : xi = 1}. Then J(x) ≤ f(x) and whenever y agrees with x on elements in J(x).
Hence, f is 1-certifiable.

Talagrand’s Inequality for Certifiable Functions
Let f : Ω → R be r-certifiable and suppose it is 1-lipschitz with constant c(changing any co-
ordinate changes the value of the function by atmost c).Then for all t > 0

Pr[f > E[f ] + t] ≤ 2 · e−
t2

4c2r(E(f)+t) (1)

and
Pr[f < E[f ]− t] ≤ 2 · e−

t2

4c2rE(f) (2)

where E[f ] is the expected value of f.

Example : Longest Increasing Subsequence
Given a sequence a := (a1, a2, · · · , an), the longest increasing problem problem is to find a
subsequence of the given sequence such that the elements of the subsequene are in sorted or-
der, from lowest to highest and the subsequence is as long as possible i.e. a set of indices
1 ≤ i1 < i2 < · · · < ik ≤ n such that xi1 ≤ xi2 ≤ · · · ≤ xik . It was shown by [2] that the
expeccted length of Longest Increasing Subsequence tends to 2

√
n as n approaches infinity.

We are interested in calculating the concentration bounds on expected length of Longest In-
creasing Subsequence. Let I(x) denote this value for a sequence x. Let the set of corresponding
indices in Longest Increasing Subsequence be denoted by J(x). Clearly, following properties
hold about J(x):

1. I(x) = |J(x)|

2. |J | is a certificate for I(x)

3. I is 1−Lipschitz

Hence, if X1, · · · , Xn are uniformly independently in [0, 1], then for I = I(X1, · · · , Xn),

Pr[I > M [I] + t] ≤ 2e−t
2/4(M [I]+t) Pr[I < M [I]− t] ≤ 2e−t

2/4M [I]

Substituting the value of M(I) = 2
√

(n) in the above inequations, if t = O(n
1
4 ), we get

Pr[|I −M [I]| > t] < ploy(1/e)

Hence, I is actually confined to a very small interval of size O(n
1
4 ).
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Our application of Talagrand’s inequality
Let us consider the application of Talagrand’s inequality to our problem.
Let f be the number of matches of the r-length substring γ in the R-length string w.
J(w) = {i · · · i+ r − 1|w[i · · · i+ r − 1] = γ[1 · · · r]}
This certificate stores all the matched positions in the string w.
Now,|J(w)| ≤ r · f(w) with the maximum occuring when all matched indices are distinct(no
overlapping).
Also, ifw′ agrees withw on positions J(w), then the stringw′ will have atleast as many matches
of γ than w.Hence,J(w) is a certificate for w. By direct application of Talagrand’s inequality.

Pr[|f − E[f ]| > δ] ≤ 2 · (e−
δ2

4c2r(E(f)+δ) + e
− δ2

4c2rE(f) ) (3)

Since E[f ] = R
tr

.
Also, f is r-lipschitz since, changing value at a particular index can change the number of
matches by atmost the length of the pattern string γ i.e. r .
Also, δ·t

r

R
= δ

E[f ]
< 0.3

Hence, δ < 0.3 · E[f ]

Hence,

Pr[|f − E[f ]| > δ] ≤ 4 · (e−
δ2

4r2r(1.3·E(f)) )

Pr[|f − E[f ]| > δ] ≤ 4 · (e−
δ2

5.2r3·E(f) )

Pr[|n− R
tr
| > δ] < 4e−

δ2tr

5.2·r3·R
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1. Becher, VerÃşnica, Santiago Figueira, and Rafael Picchi. "TuringâĂŹs unpublished al-
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