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Primal-Dual Schema for LP

Primal

min
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≥ bi , i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n

Dual

max
m∑
i=1

biyi

s.t.
m∑
i=1

aijyi ≤ cj , j = 1, . . . , n

yi ≥ 0 j = 1, . . . ,m

Primal Complementary Slackness Conditions
Let α ≥ 1.
Then for each 1 ≤ j ≤ n : either xj = 0 or cj/α ≤ Σm

i=1aijyi ≤ cj .

Dual Complementary Slackness Conditions
Let β ≥ 1.
Then for each 1 ≤ i ≤ m : either yi = 0 or bi ≤ Σn

j=1aijxj ≤ β · bi .
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Primal-Dual Schema for LP

Theorem
If x and y are primal and dual feasible solutions satisfying the
conditions stated above then

n∑
j=1

cjxj ≤ α · β ·
m∑
i=1

biyi

Proof ∑
j

cjxj ≤ α ·
∑
i ,j

aijxjyi ≤ α · β ·
∑
i

biyi

The first inequality follows from the Primal Complementary
Slackness Condition whereas the second follows from the Dual
Complementary Slackness Condition.
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Primal-Dual Schema for LP

Algorithm

I Start with a primal infeasible solution and dual feasible
solution, typically x = 0 and y = 0.

I Iteratively improve the feasibility of the primal solution and
optimality of the dual solution ensuring that a primal feasible
solution is obtained in the end and all conditions are satisfied
for a suitable choice of α and β.

I The primal solution is always extended integrally to ensure
final solution is integral. Need not be true for dual solution.

I Cost of dual solution used as lower bound on OPT.
I Approximation ratio of αβ by the theorem on previous slide.
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Primal-Dual Schema for SDP

Primal

max C • X
s.t. Aj • X ≤ bj ∀j ∈ [m]

X � 0

Dual

min b · y
m∑
j=1

Ajyj � C

y ≥ 0

I y = 〈y1, y2, . . . , ym〉 is the dual variable and
b = 〈b1, b2, . . . , bm〉.

I Strong Duality holds under Slater Condition.
I Assume A1 = I and b1 = R to get Tr(X) ≤ R i.e. a simple

scaling constant. Present in most of SDP relaxation
combinatorial optimization problems.
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Computing near optimal solution of a SDP using
Primal-Dual Approach

I Let current guess for optimum be α.

I Algorithm either tries to construct a primal feasible PSD
matrix X with objective value > α or a dual feasible solution
with value at most (1 + δ)α for arbitrarily small δ > 0.

I Iteratively constructs X(1),X(2),X(3), . . . .
I Starts with X(1) = R

n I.
I Takes help from an auxillary algorithm ORACLE. ORACLE’s

task is to:

I Find X and y such that X � 0 and y ≥ 0
I Try to produce a feasible dual by the end whose value is at

most (1 + δ)α for some arbitrarily small δ > 0
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MWT

MWT Algorithm
Fix ε < 1

2 and let ε′ = − ln(1− ε). In every round t, for
t = 1, 2, 3, . . .

1. Compute

W(t) = (1− ε)
∑t−1

τ=1 M(t)

= exp

(
−ε′

(
t−1∑
τ=1

M(t)

))

2. Use the density matrix P(t) = W(t)

Tr(W(t))
and observe the event

M(t).
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MWT

MWT Theorem
The Matrix Multiplicative Weights algorithm generates density
matrices P(1),P(2), . . . ,P(T) such that:∑T

t=1 M(t) • P(t) ≤ (1 + ε)λn(
∑T

t=1 M(t)) + ln n
ε

Proof Idea
Track changes in Tr(W(t)) over time and use Golden-Thompson
inequality.
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MWT

Proof

Tr(W(t+1)) = Tr(exp(−ε′
t∑

τ=1

M(τ)))

≤ Tr(exp(−ε′
t−1∑
τ=1

M(τ)) exp(−ε′M(t)))

= W(t) • exp(−ε′M(t))

≤W(t) • (I− εM(t))

= Tr(W(t)) · (1− εM(t) • P(t))

≤ Tr(W(t)) · exp(−εM(t) • P(t))



MWT

Proof
Since Tr(W1) = Tr(I) = n, by induction,

Tr(WT+1) ≤ n exp(−ε
T∑
t=1

M(t) • P(t))

On the other hand, since Tr(eA) =
∑n

k=1 e
λk (A) ≥ eλn(A),

Tr(WT+1) = Tr(exp(−ε′
T∑
t=1

M(t))) ≥ exp(−ε′λn(
T∑
t=1

M(t)))

Thus,

exp(−ε′λn(
T∑
t=1

M(t))) ≤ n exp(−ε
T∑
t=1

M(t) • P(t))



MWT

I A feasible dual is the one in which the slack matrix∑m
j=1 Ajyj − C � 0

I MWT theorem replaces ORACLE’s task to be replaced by the
following steps:

I Focus on finding a slack matrix which has a non-negative inner
product with the current solution matrix X(t)

I If the ORACLE manages to do this even for a small number of
steps, MWT theorem guarantees that the average slack matrix
over these steps would be almost psd

I Saving:
Producing a psd matrix → linear condition
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Computing near optimal solution of a SDP using
Primal-Dual Approach

Description of ORACLE
ORACLE searches for a vector b from the polytope
Dα = {y : y ≥ 0, b · y ≤ α} such that

m∑
j=1

(Aj • X(t))yj − (C • X(t)) ≥ 0 (1)

If ORACLE succeeds in finding such a y then X(t) is either primal
infeasible or has value C • X(t) ≤ α.
Proof: Suppose this is not the case. Then

m∑
j=1

(Aj • X(t))yj − (C • X(t)) ≤
m∑
j=1

bjyj − (C • X(t)) < α− α = 0

which contradicts (1)



Computing near optimal solution of a SDP using
Primal-Dual Approach

I If ORACLE declares that there is no such y ∈ Dα, then X(t) is
a primal feasible solution with objective value at least α

I y need not be dual feasible
I Primal-Dual SDP algorithm depends on width parameter, ρ.

width of ORACLE
Smallest ρ such that for every primal candidate X, the vector
y ∈ Dα returned by the ORACLE satisfies ‖Ajyj − C‖ ≤ ρ

I Higher width equals slow progress



Computing near optimal solution of a SDP using
Primal-Dual Approach

Primal-Dual Algorithm for SDP
Set X(1) = R

n I. Let ε = δα
2ρR , and let ε′ = − ln(1− ε). Let

T = 8ρ2R2 ln(n)
δ2α2 . For t = 1, 2, . . . ,T :

1. Run the ORACLE with candidate solution X(t).
2. If the ORACLE fails, stop and output X(t).
3. Else, let y(t) be the vector generated by ORACLE.

4. Let M(t) = (Σm
j=1Ajy

(t)
j − C + ρI)/2ρ.

5. Compute W(t+1) = (1− ε)Σt
τ=1M

(τ)
= exp

(
− ε′(Σt

τ=1M
(τ))
)
.

6. Set X(t+1) = RW(t+1)

Tr(W(t+1) and continue.



Computing near optimal solution of a SDP using
Primal-Dual Approach

Theorem 1
In the Primal-Dual SDP algorithm, assume that the ORACLE never
fails for T = 8ρ2R2 ln(n)

δ2α2 iterations. Let ȳ = δα
R e1 + 1

T ΣT
t=1y

(t).
Then ȳ is a feasible dual solution with objective value at most
(1 + δ)α.

Proof.
...mmw used...



Outline

Primal-Dual Schema
Primal-Dual Schema for LP
Extension to SDP
Application to MAXCUT

Problems
Undirected BALANCED SEPARATOR
Undirected SPARSEST CUT

References

Appendix



Approximating MAXCUT SDP for d -regular graphs

MAXCUT SDP in vector and matrix form (ignoring a factor of 1
4).

max
∑
{i ,j}∈E

‖vi − vj‖2

∀i ∈ [n] :‖vi‖2 ≤ 1

maxC • X
∀i ∈ [n] :Xii ≤ 1

X � 0

Dual of SDP:

minΣn
i=1xi

diag(x) � C
∀i ∈ [n] :xi ≥ 0

I C is the combinatorial Laplacian of the graph.
I diag(x) is the diagonal matrix with the vector x on the

diagonal.



Approximating MAXCUT SDP for d -regular graphs

Combinatorial Laplacian of a graph

C = D− A

where D is the degree matrix of the graph (diagonal matrix with
diagonal entries as the number of edges incident on that vertex)
and A is the adjacency matrix the graph.

I Intuitively, Cii = Σi 6=jc{i ,j} and Cij = −cij
I If d is maximum degree of the graph, then 0 � C � 2d I.

(Proof: Using xTAx ≥ 0)
I If vi are the vectors obtained from the Cholesky decomposition

of X, then C • X = Σ{i ,j}∈Ec{i ,j}‖vi − vj‖2

I When G is d-regular, C = I− 1
dA



Approximating MAXCUT SDP for d -regular graphs

I nd ≤ α ≤ 3nd (Property of d-regular graph).
I Trace of optimal X is n.
I If width parameter ρ is O(d), then number of iterations is

O(log n).
I Each invocation of ORACLE and matrix exponentiation takes

Õ(m) time.
I Approximate Matrix Exponentiation by Johnson-Lindenstrauss

Dimension Reduction.
I Number of non-zero matrix entries in C is O(m).



Approximating MAXCUT SDP for d -regular graphs:
Description of ORACLE

I Given a candidate solution X, find a vector x ≥ 0 such that
Σixi ≤ α and ΣixiXii − C • X ≥ 0

I Intuitively, to make ΣixiXii as large as possible, make xi large
whenever Xii is large.

I However, also ensure that xi ≤ O(αn ) = O(d) to ensure the
width bound: ‖diag(x)− C‖ ≤ O(d)



Approximating MAXCUT SDP for d -regular graphs:
Description of ORACLE

1. C • X ≤ α. Set all xi = α
n . Since ΣiXii = Tr(X) = n,

ΣixiXii − C • X ≥ α

n
ΣiXii − α = 0

2. C • X ≥ α. Let C • X = λα for some λ ≥ 1. Since C � 2d I,
λα = C • X ≤ 2nd . Also, α ≥ nd . Hence, λ ≤ 2.
Let S := {i : Xii ≥ λ}. Let k := Σi∈SXii .
If k ≥ δ1n for some constant δ1, set xi = λα

k ∀i ∈ S and
xi = 0∀i /∈ S . Then Σixi = |S |λαk ≤ α since
k ≥ ΣiXii ≥ λ|S |. Then
ΣixiXii − C • X = λα

k Σi∈SXii − λα ≥ 0.



Approximating MAXCUT SDP for d -regular graphs:
Description of ORACLE

3. Otherwise, we construct a feasible primal solution X of value
≥ (1− δ)α. Let vi be Cholesky decomposition of X.
Set v′i := vi for i /∈ S and v′i = v0 for i ∈ S , for some fixed
unit vector v0. Let X̃ be the Gram matrix of v′.
Let ES be the set of edges with at least one endpoint in S .
We have C • (X̃− X) ≥ −Σ{i ,j}∈ES

‖vi − vj‖2. Also,∑
{i ,j}∈ES

‖vi − vj‖2 ≤
∑
{i ,j}∈ES

2[‖vi‖2 + ‖vj‖2]

≤ 2d
∑
i∈S
‖vi‖2 + 2dλ|S | ≤ 4dk ≤ 4δ1nd

Hence C • X̃ ≥ λα− 4δ1nd . For error parameter δ, choose
δ1 ≤ δλ

4 to lower bound RHS by (1− δ)λα. So X∗ = 1
λ X̃ is

feasible with value ≥ (1− δ)α.



Primal-Dual approach: Extension to minimization problems

I ORACLE finds a vector y from the polytope
Dα = {y : y ≥ 0,b · y ≥ α} such that
Σm
j=1(Aj • X)yj − (C • X) < 0.

I Matrix exponentiation is computed with base (1 + ε) rather
than (1− ε).

I Allow ORACLE to find a matrix F(t) such that for all primal
feasible X, F(t) • X ≤ C • X and a vector y(t) ∈ Dα such that

Σm
j=1(Aj • X(t))y

(t)
j − (F(t) • X) ≤ 0

I We can replace C by F(t) (which can be decided by us). If
F(t) � C, then since any primal feasible X is PSD, we have
F(t) • X ≤ C • X. So if suffices to find F(t) � C.

I This is done to reduce the width parameter, ρ.

I M := (Σm
j=1Ajy

(t)
j − F(t) + ρI)/2ρ



Primal-Dual approach: Extension to minimization problems

Theorem
In the modified Primal-Dual Algorithm for a minimization SDP as
described in the previous slide, if the ORACLE never fails for
T = 8ρ2R2 ln(n)

δ2α2 iterations, then ȳ = δα
R e1 + 1

T ΣT
t=1y

(t) is a feasible
dual solution with dual objective value at least (1− δ)α.

Proof.
Similar to maximization theorem’s proof.



Matrix exponentiation

eM =
∞∑
i=0

Mi

i !
= I +

M
1

+
M2

2!
+ · · ·

I e0 = I
I eaXebX = e(a+b)X where a and b are reals
I exp(A + B) 6= exp(A) + exp(B) in general.
I exp(AT ) = (exp A)T

I exp(A) is PSD for all symmetric A since
exp(A) = exp(1

2A)T exp(1
2A).

I Cholesky decomposition of exp(A) is exp(1
2A).

I Golden-Thompson Inequality:
Tr exp(A + B) ≤ Tr (exp(A) exp(B))
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Undirected BALANCED SEPARATOR

Undirected Balanced Separator Problem
Given a graph G (V ,E ) with |V | = n, |E | = m, and capacity ce on
edge e ∈ E , find the c-balanced cut with minimum capacity. A cut
(S ,S) is called c-balanced if |S | ≥ cn and |S | ≥ cn.



Undirected BALANCED SEPARATOR

Undirected Balanced Separator Problem
Given a graph G (V ,E ) with |V | = n, |E | = m, and capacity ce on
edge e ∈ E , find the c-balanced cut with minimum capacity. A cut
(S ,S) is called c-balanced if |S | ≥ cn and |S | ≥ cn.

t pseudo-approximation
A t pseudo-approximation for minimum c-BALANCED SEPARATOR
problem is a c ′-balanced cut for some constant c ′ whose expansion is
within a factor of t of that of minimum c-BALANCED SEPARATOR
(c ′ ≤ ct).



Undirected BALANCED SEPARATOR

Undirected Balanced Separator Problem
Given a graph G (V ,E ) with |V | = n, |E | = m, and capacity ce on
edge e ∈ E , find the c-balanced cut with minimum capacity. A cut
(S ,S) is called c-balanced if |S | ≥ cn and |S | ≥ cn.

Theorem
An O(log n) pseudo-approximation to the minimum c-BALANCED
SEPARATOR can be computed in Õ(m + n1.5) time using O(log2(n))
single commodity flow computations.



Undirected BALANCED SEPARATOR

SDP

min
∑

e={i ,j}∈E

ce‖vi − vj‖2

∀i : ‖vi‖2 = 1

∀p :
k−1∑
j=1

‖vij − vij+1‖
2 ≥ ‖vi1 − vik‖

2

∀S :
∑
i ,j∈S
‖vi − vj‖2 ≥ an2

minC • X
∀i : Xii = 1

∀p : Tp • X ≥ 0

∀S : KS • X ≥ an2

X � 0



Undirected BALANCED SEPARATOR

Notations
I Assign vectors vi to nodes in G . Let X be the Gram matrix of

these vectors.
I C is the Combinatorial Laplacian of the graph.
I For any subset S of the nodes, KS is defined to be the

Laplacian of the graph where all nodes in S are connected by
edges, all other edges are absent.

I |S | ≥ (1− ε)n
I For a generic path p = (i1, i2, . . . , ik) of nodes in the complete

graph, Tp is the difference of the Laplacian of p and that of a
single edge connecting its endpoints i1 and ik .

I a = 4[c(1− c)− ε]



Undirected BALANCED SEPARATOR

Dual Program

max
∑
i

xi + an2
∑
S

zS

C � diag(x) +
∑
p

fpTp +
∑
S

zSKS

∀p,S : fp, zS ≥ 0

Notations
I Variable xi for every node i , fp for every path p and zS for

every set S of size at least (1− ε)n



Undirected BALANCED SEPARATOR : Oracle

I Let α be the current guess of the solution.
I Let X be the current solution generated by the Primal-Dual

algorithm.
I Tr(X) = n
I Using MWT Theorem for minimization problems, ORACLE

needs to find variables xi , fp ≥ 0, zS ≥ 0 and a matrix F � C such
that

∑
i xi + an2∑

S zS ≥ α and
diag(x) • X +

∑
p fp(Tp • X) +

∑
S zS(K • X)− (F • X) ≤ 0

I If the ORACLE succeeds, then the matrix returned as feedback is
M = diag(x) +

∑
p fpTp +

∑
S zSKS − F

I ORACLE needs to ensure a width of Õ(αn )
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Undirected BALANCED SEPARATOR : Oracle

Implementation: Basic Idea

I Given a candidate solution X, check if all Xii are O(1).

I If a significant fraction of them aren’t, punish X by setting xi
in a similar way as in MAX-CUT

I Check if KV • X ≥ Ω(n2)

I If not, set zS appropriately to punish X.

I If both the above conditions are satisfied, do a flow
computation and interpret fp variables as multicommodity flow
in the graph.
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Undirected BALANCED SEPARATOR : Oracle

Lemma 1
For at least a a

32 fraction of directions u, there are efficiently
computable sets S and T , each of size at least a

128n , such that for
any i ∈ S and j ∈ T , (vj − vi ) · u ≥ a

48
√
n

Proof Idea
Consider the Gaussian beahviour of projections on a random vector
u the median value of vi · u = m
S = {i : vi · u ≤ m − δ}
T = {i : vi · u ≥ m}
δ = a

48
√
n
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Undirected BALANCED SEPARATOR : Oracle

Lemma 2
Let S ⊆ V be a set of nodes of size Ω(n). Suppose for all i ∈ S ,
vectors vi of length O(1) are given such that∑

i ,j∈S ‖vi − vj‖2 ≥ Ω(n2), and a quantity α. Then there is an
algorithm, which, using a single max-flow computation, either
outputs a valid O( log(n)α

n )-regular flow fp such that∑
ij fij‖vi − vj‖2 ≥ α, or a c ′-balanced cut of expansion

O(log(n)αn ).

Proof Idea
Using Lemma 1
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Undirected BALANCED SEPARATOR : Oracle

ORACLE Description
Given a candidate solution X, the ORACLE runs the following steps
(set all unspecified variables, including F to 0)
1. Assume, WLOG, X11 ≤ X22 ≤ · · · ≤ Xnn. Define

h = (1− ε)n + 1. If Xhh ≥ 2, set xi = − α
εn for i ≥ k and

xi = 2α
(1−ε)n for i < k . Then,

diag(x) • X =
∑
i≥k
− α
εn

Xii +
∑
i<k

2α
(1− ε)n

Xii

≤ − α
εn
· 2 · εn +

2α
(1− ε)n

· (n − 2εn) ≤ 0

Since all xi = O(αn ), ‖diag(x)‖ ≤ O(αn )



Undirected BALANCED SEPARATOR : Oracle

ORACLE Description
Given a candidate solution X, the ORACLE runs the following steps
(set all unspecified variables, including F to 0)
2. Assume that for all but εn exceptional nodes i , Xii ≤ 2. Let

W := {i : Xii ≤ 2} and S := V \W . Since |S | ≥ (1− ε)n so
we have KS • X ≥ an2 in the SDP. If KS • X ≤ an2

2 , choose
zS = 2α

an2 and all xi = −α
n . Then,(

−α
n
I +

2α
an2KS

)
• X ≤ α− α = 0

Since, 0 � KS � nI, ‖ − α
n I + 2α

an2 KS‖ ≤ O(αn )



Undirected BALANCED SEPARATOR : Oracle

ORACLE Description
Given a candidate solution X, the ORACLE runs the following steps
(set all unspecified variables, including F to 0)

3. Assume KS • X ≥ an2

2 , and v1, v2, . . . , vn be the vectors
obtained from the Cholesky decomposition of X. For all nodes
i ∈ S , ‖vi‖2 ≤ 2. Also, KS • X ≥ an2

2 implies∑
i ,j∈S ‖vi − vj‖2 ≥ an2

2 .
Try satisfying path inequalities by using multicommodity flow
and Lemma 2 (either we can find a nice flow which gives
substantial feedback or a cut with desired expansion, i.e, a
near-optimal integral solution).



Undirected BALANCED SEPARATOR : Oracle

ORACLE Description : Notations

I fp is the flow on a path p.
I fe is the flow on edge e; fe :=

∑
p3e fp.

I fi is the total flow through a node; fi =
∑

p∈Pi
where Pi is the

set of paths starting from i .
I fij is total flow between nodes i , j ; fij =

∑
p∈Pij

fp where Pij is
the set of paths from i to j .

I A valid d-regular flow satisfies the following constraints:
I ∀e : fe ≤ ce
I ∀i : fi ≤ d



Undirected BALANCED SEPARATOR : Oracle

ORACLE Description

I Apply Lemma 2 to set S .
I If a cut of desired expansion is found, stop.
I If a valid d-regular flow is obtained which satisfies∑

ij fij‖vi − vj‖2 ≥ α, where d = O( log(n)α
n ).

I F := Laplacian of the weighed graph with edge weights fe .
I Capacity constraints fe ≤ ce imply that F � C
I D := Laplacian of the complete graph where only edges {i , j}

with i ∈ S and j ∈ T have weight fij and rest have 0 weight.
I D • X =

∑
ij fij‖vi − vj‖2 ≥ 2α (Using Lemma 2).
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Undirected BALANCED SEPARATOR : Oracle

ORACLE Description

I Set all xi = α
n , and all zS = 0.

I
∑

p fpTp = F−D
I Thus the feedback matrix becomes

diag(x) + F−D− F = diag(x)−D

Then (αn I−D) • X ≤ α− α = 0.
Also, since the flow is d-regular, 0 � D � 2d I. Hence,
−2d I � α

n I−D � α
n I
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Undirected BALANCED SEPARATOR : Time Complexity Analysis

I Assume that graph is preprocessed using algorithm of Benczúr
and Karger

I ρ = O( log(n)α
n ) and R = n. Thus the number of iterations

from Theorem 1 is O(log3(n)).
I Each iteration involves at most one max-flow computation

which can be done by Goldberg and Rao’s algorithm in
Õ(n1.5) time since there are O(n) edges.

I We also compute, in each iteration, an approximation of
Cholesky decomposition of the matrix exponential by
projecting on a random O(log n) dimensional subspace. Since
there are only O(log3(n)) iterations and each iteration adds at
most Õ(n1.5) demand pairs in the max-flow computation, the
matrix exponential has only Õ(n1.5) non-zero entries and can
be computed in Õ(n1.5) time.

I Thus running time is Õ(m + n1.5)
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Undirected SPARSEST CUT

Undirected Sparsest Cut Problem
Given a graph G (V ,E ) with |V | = n, |E | = m, and capacity ce on
edge e ∈ E , find the cut (S , S) with minimum expansion,

E(S,S)

min{|S |,|S|}
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Undirected Sparsest Cut Problem
Given a graph G (V ,E ) with |V | = n, |E | = m, and capacity ce on
edge e ∈ E , find the cut (S , S) with minimum expansion,

E(S,S)

min{|S |,|S|}

Theorem
An O(log n) pseudo-approximation to the SPARSEST CUT can be
computed in Õ(m + n1.5) time using O(log2(n)) single commodity flow
computations.



Undirected SPARSEST CUT

SDP

min
∑

e={i ,j}∈E

ce‖vi − vj‖2

∀p :
k−1∑
j=1

‖vij − vij+1‖
2 ≥ ‖vi1 − vik‖

2

‖
∑
i

vi‖2 = 0∑
i

‖vi‖2 = n

minC • X
∀p : Tp • X ≥ 0

J • X = 0
Tr(X) = n

X � 0

J is the all ones matrix.



Undirected SPARSEST CUT

SDP

minC • X
∀p : Tp • X ≥ 0

J • X = 0
Tr(X) = n

X � 0

J is the all ones matrix.

Dual Program

max nx

xI +
∑
p

fpTp + zJ � C

∀p : fp ≥ 0



Undirected SPARSEST CUT : Oracle

Lemma 3
Given for all i ∈ V , vectors vi , such that for some constant δ1,
n2 ≥

∑
ij ‖vi − vj‖2 ≥ (1− δ1)n2, and a quantity α. Then there is

an algorithm, which, using a single max-flow computation, outputs
either,

1. a valid O(αn )-regular flow fp, such that
∑

ij fij‖vi − vj‖2 ≥ α,
or,

2. a cut of expansion O(αn ), or,
3. a set of nodes S ⊆ V of size Ω(n), such that for all i ∈ S ,
‖vi‖2 = O(1),

∑
i ,j∈S ‖vi − vj‖2 ≥ Ω(n2)
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Undirected SPARSEST CUT : Oracle

ORACLE Description
Given a candidate solution X, the oracle always sets x = α

n . Since
x I • X = α, it now needs to find fp, z and F � C such that

α +
∑
p

fp(Tp • X) + z(J • X)− (F • X) ≤ 0

It runs the following steps:

1. If J • X ≥ δ1n2, for some small constant δ1, then set
z = − α

δ1n2 , so that z(J • X) ≤ −α. Also, ‖αn I− zJ‖ ≤ O(αn )

2. Assume J • X ≤ δ1n2 and v1, v2, . . . , vn be the vectors
obtained from the Cholesky decomposition of X.
J •X =⇒ n2 ≥

∑
ij ‖vi − vj‖2 ≥ (1− δ1)n2. Apply lemma 3.
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Undirected SPARSEST CUT : Oracle

ORACLE Description

I If from the previous step, a cut of expansion O(αn ) is obtained,
output it.

I If we get a flow fp such that
∑

ij fij‖vi − vj‖2 ≥ α, define F
and D to be the flow and demand graph Laplacians
respectively and proceed as in step 3 of undirected BALANCED
SEPARATOR.

I Finally if a set of nodes S ⊆ V of size Ω(n) is obtained, such
that for all i ∈ S , ‖vi‖2 = O(1) and∑

i ,j∈S ‖vi − vj‖2 ≥ Ω(n2), apply lemma 1 to S .

I If a cut of small expansion is obtained, stop.
I Else if a d-regular flow such that

∑
ij fij‖vi − vj‖2 ≥ α is

obtained, proceed as before.
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Undirected BALANCED SEPARATOR : Oracle

Lemma 1
For at least a a

32 fraction of directions u, there are efficiently
computable sets S and T , each of size at least a

128n , such that for
any i ∈ S and j ∈ T , ((v)j − vi ) · u ≥ a

48
√
n



Undirected BALANCED SEPARATOR : Oracle

Lemma 1: Proof
I Since

∑
ij ‖vi − vj‖2 ≥ an2 and ‖vi − vj‖ ≤ 2,∑

ij ‖vi − vj‖ ≥ a
2n

2.
I Thus for any node i ,

a

2
n2 ≤

∑
jk

‖vj − vk‖ ≤
∑
jk

‖vj − vi‖+ ‖vi − vk‖ ≤ n
∑
j

‖vi − vj‖

So, ∑
j

‖vi − vj‖ ≥
a

2
n



Undirected BALANCED SEPARATOR : Oracle

Lemma 1: Proof
I Since the maximum value of ‖vi − vj‖ is 2, there must be at

least a
8n nodes i such that ‖vi − vj‖ ≥ a

4 .
I Define a stretched pair as a pair of nodes i , j , such that
|vi · u− vj · u| ≥ a

24
√
n . The Gaussian nature of projections

guarantees that this occurs with probability 1
2 . Thus,

E [#stretched pairs] ≥ 1
2
· 1
2
· a
8
n · n =

a

32
n2

I Since there are atmost 1
2n

2 pairs, for at least a
32 fraction of

directions u, we have a
64n

2 stretched pairs.



Undirected BALANCED SEPARATOR : Oracle

Lemma 1: Proof
I Let u be such a direction. Define δ = a

48
√
n and m to be the

median value of vi · u
I Define sets L = {i : vi · u ≤ m − δ},

M− = {i : vi · u ∈ [m − δ,m]},
M+ = {i : vi · u ∈ [m,m + δ]}, R = {i : vi · u ≥ m + δ}.
Thus, any stretched pair has at least one node in L ∪ R .

I At least one of L or R has size at least a
128n, as otherwise the

number of stretched pairs is less than 2 · a
128n · n = a

64n
(contradiction).

I If |L| ≥ a
128n, set S = L, T = M+ ∪ R .

I |T | ≥ n
2 as T is the set of all points with projection higher

than median.



Undirected BALANCED SEPARATOR : Oracle

Lemma 2
Let S ⊆ V be a set of nodes of size Ω(n). Suppose for all i ∈ S ,
vectors vi of length O(1) are given such that∑

i ,j∈S ‖vi − vj‖2 ≥ Ω(n2), and a quantity α. Then there is an
algorithm, which, using a single max-flow computation, either
outputs a valid O( log(n)α

n )-regular flow fp such that∑
ij fij‖vi − vj‖2 ≥ α, or a c ′-balanced cut of expansion

O(log(n)αn ).



Undirected BALANCED SEPARATOR : Oracle

Lemma 2 : Proof
I What we seek: A d-regular flow fp for d := β log(n)·α

n where β
is a sufficiently large constant.

I Choose a direction represented by a unit vector u at random.
I Since KS • X ≥ Ωn2, thus

∑
i ,j∈S ‖vi − vj‖2 ≥ Ωn2

I Using Lemma 1, we can find sets S and T of size cn each, for
some constant c > 0, such that for all i ∈ S and j ∈ T , we
have (vj − vi ) · u ≥ σ√

n for some constant σ > 0
I Using Gaussian nature of projections, with very high

probability, for any pair of nodes i , j we have
|(vj − vi ) · u| ≤ O(

√
log(n)) · ‖vi−vj‖√

n



Undirected BALANCED SEPARATOR : Oracle

Lemma 2 : Proof
I Thus with constant probability, we get sets S and T such that

for all nodes i ∈ S and j ∈ T , we have ‖vi − vj‖2 ≥ γ
log(n) for

some constant γ > 0
I If this is the case, connect all nodes in S to a single source and

all nodes in T to a single sink with edges of capacity d each.
Let fp be the max flow in this network. Suppose the total flow
obtained is at least cβ

2 log(n) · α. Assume that all flow
originates from a node i ∈ S and ends at some node j ∈ T .
Then, ∑

i∈S ,j∈T
fij‖vi − vj‖2 ≥

cβ

2
log(n) · α× γ

log(n)
= 2α

if β = 4
cγ



Undirected BALANCED SEPARATOR : Oracle

Lemma 2 : Proof
I If the total flow obtained is less than cβ

2 log(n) · α, by
max-flow-min-cut theorem, the cut obtained is also at most
this size. This is c/2-balanced, since atmost
cβ
2 log(n) · α/d = cn/2 source (and sink) edges can be cut.
Thus cut expansion is O(log(n) · αn )



Undirected SPARSEST CUT : Oracle

Lemma 3
Given for all i ∈ V , vectors vi , such that for some constant δ1,
n2 ≥

∑
ij ‖vi − vj‖2 ≥ (1− δ1)n2, and a quantity α. Then there is

an algorithm, which, using a single max-flow computation, outputs
either,

1. a valid O(αn )-regular flow fp, such that
∑

ij fij‖vi − vj‖2 ≥ α,
or,

2. a cut of expansion O(αn ), or,
3. a set of nodes S ⊆ V of size Ω(n), such that for all i ∈ S ,
‖vi‖2 = O(1),

∑
i ,j∈S ‖vi − vj‖2 ≥ Ω(n2)
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Undirected SPARSEST CUT : Oracle

Lemma 3 : Proof
Given vectors vi such that n2 ≥

∑
ij ‖vi − vj‖2 ≥ (1− δ1)n2, run

the following steps,
1. For a node i and radius r , let B(i , r) = {j : ‖vi − vj‖ ≤ r}. If

there is a node i such that for some constant δ2,
|B(i , δ2)| ≥ n/4, then any i0 ∈ B(i , δ2) satisfies
|B(i0, 2δ2)| ≥ n/4. Find such i0 by random sampling. Define
L = B(i0, 2δ2), and R = V \L. For j ∈ R , define
d(j , L) = mini∈L ‖vi − vj‖2. Then, since∑

ij ‖vi − vj‖2 ≥ (1− δ1)n2,
∑

j∈R d(j , L) ≥ n
10 for suitable

choice of δ1, δ2. Define k := |R|
|L| . k = O(1)



Undirected SPARSEST CUT : Oracle

Lemma 3 : Proof
Given vectors vi such that n2 ≥

∑
ij ‖vi − vj‖2 ≥ (1− δ1)n2, run

the following steps,
1. . . .

Connect all nodes in L to a single source with edges of
capacity 10kα

n and all nodes in R to a single sink with edges of
capacity 10α

n and compute the max-flow. If the flow saturates
all source and sink nodes, then∑

i∈L,j∈R
fij‖vi − vj‖2 ≥

∑
j∈R

10α
n
· d(j , L) ≥ α



Undirected SPARSEST CUT : Oracle

Lemma 3 : Proof
Given vectors vi such that n2 ≥

∑
ij ‖vi − vj‖2 ≥ (1− δ1)n2, run

the following steps,
2. If the flow doesn’t saturate all source and sink edges, then let

the number of nodes in L in the resulting cut connected to
source be ns and the number of nodes in R connected to the
sink be nt . Then the capacity of the graph edges cut is at
most 10α

n (|R| − kns − nt), and the smaller side of the cut has
at least min{|L| − ns , |R| − nt} nodes. Thus, expansion of cut
is at most 10kα

n = O(αn ).



Undirected SPARSEST CUT : Oracle

Lemma 3 : Proof
Given vectors vi such that n2 ≥

∑
ij ‖vi − vj‖2 ≥ (1− δ1)n2, run

the following steps,
3. For all nodes i , let |B(i , δ2)| < n/4. Then it can be easily

checked that there is a node i such that |B(i ,
√
2)| ≥ (1−δ1)

2 n.
Find i0, by random sampling, such that |B(i , 2

√
2)| ≥ (1−δ1)

2 n.
Let S = B(i , 2

√
2). Since for every i ∈ S , |B(i , δ2)| < n/4,∑

i ,j∈S ‖vi − vj‖2 ≥ Ω(n2). Output S .



Matrix Exponentiation

Complexity of computing exponential of a matrix

I No fast algorithm known. Still an area of active research.
I Special cases:

1. Exponential of a diagonal matrix: A diagonal matrix whose
diaogonal elements are exponential of diagonal elements of
original matrix.

2. Projection Matrix (P2 = P):
exp(P) = I + P(1 + 1

2! + · · · ) = I + (e − 1)P
3. Nilpotent Matrix (Pq = 0): exp(P) = I + P + P2

2! + · · ·+ Pq−1

(q−1)!

I Other techniques include using Laurent Series, Sylvester’s
Formula, etc.

I If Y is invertible, then eYXY−1
= YeXY−1. This gives a O(n3)

algorithm for matrix exponentiation.



Matrix Exponentiation

I Idea: only approximate computation suffices.

I ORACLE finds y such that
m∑
j=1

(Aj • X(t))yj − (C • X(t)) ≥ 0.

I Let v1, v2, . . . , vn be vectors obtained from Cholesky
decomposition of X(t) such that
X(t)
ij = vi · vj = 1

2 [‖vi‖2 + ‖vj‖2 − ‖vi − vj‖2 ≥ 0.
I ORACLE needs to find appropiate variables si and tij such that

Σi si‖vi‖2 + Σij tij‖vi − vj‖2 ≥ 0.
I Vectors vi obtained from Cholesky decomposition of

X(t) = exp(M) are simply the row vectors of exp(1
2M).

I Since we are only interested in norms, we can try
Johnson-Lindenstrauss dimension reduction.



Matrix Exponentiation

Johnson-Lindenstrauss Lemma
Given 0 < ε < 1, a set X of m points in Rn and a number
n > 8 ln n/ε2, there is a linear map RN → Rn such that

(1− ε)‖u− v‖2 ≤ ‖f (u)− f (v)‖2 ≤ (1 + ε)‖u− v‖2

for all u, v ∈ X.

I vi are the vectors obtained from Cholesky Decomposition of
X(t).

I Project the vectors vi on a random d = O( log n
δ2

) dimensional
subspace, and scale the projections by

√
n
d to get vectors v′.

I With high probability, ‖v′i‖2 and ‖v′i − v′j‖2 are within (1± δ)

of ‖vi‖2 and ‖vi − vj‖2.
I Run ORACLE for X′ in a way that its feedback is also valid for

X(t).
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