
A Combinatorial, Primal-Dual Approach to
Semidefinite Programs

(Paper Presentation)

Pankaj Prateek
Akshay Kumar

IIT Kanpur

Outline

Primal-Dual Schema
Primal-Dual Schema for LP
Extension to SDP
Application to MAXCUT

Problems
Undirected BALANCED SEPARATOR
Undirected SPARSEST CUT

References

Appendix

Outline

Primal-Dual Schema
Primal-Dual Schema for LP
Extension to SDP
Application to MAXCUT

Problems
Undirected BALANCED SEPARATOR
Undirected SPARSEST CUT

References

Appendix

Primal-Dual Schema for LP

Primal

min
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≥ bi , i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n

Dual

max
m∑
i=1

biyi

s.t.
m∑
i=1

aijyi ≤ cj , j = 1, . . . , n

yi ≥ 0 j = 1, . . . ,m

Primal Complementary Slackness Conditions
Let α ≥ 1.
Then for each 1 ≤ j ≤ n : either xj = 0 or cj/α ≤ Σm

i=1aijyi ≤ cj .

Dual Complementary Slackness Conditions
Let β ≥ 1.
Then for each 1 ≤ i ≤ m : either yi = 0 or bi ≤ Σn

j=1aijxj ≤ β · bi .

Primal-Dual Schema for LP

Primal

min
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≥ bi , i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n

Dual

max
m∑
i=1

biyi

s.t.
m∑
i=1

aijyi ≤ cj , j = 1, . . . , n

yi ≥ 0 j = 1, . . . ,m

Primal Complementary Slackness Conditions
Let α ≥ 1.
Then for each 1 ≤ j ≤ n : either xj = 0 or cj/α ≤ Σm

i=1aijyi ≤ cj .

Dual Complementary Slackness Conditions
Let β ≥ 1.
Then for each 1 ≤ i ≤ m : either yi = 0 or bi ≤ Σn

j=1aijxj ≤ β · bi .

Primal-Dual Schema for LP

Primal

min
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≥ bi , i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n

Dual

max
m∑
i=1

biyi

s.t.
m∑
i=1

aijyi ≤ cj , j = 1, . . . , n

yi ≥ 0 j = 1, . . . ,m

Primal Complementary Slackness Conditions
Let α ≥ 1.
Then for each 1 ≤ j ≤ n : either xj = 0 or cj/α ≤ Σm

i=1aijyi ≤ cj .

Dual Complementary Slackness Conditions
Let β ≥ 1.
Then for each 1 ≤ i ≤ m : either yi = 0 or bi ≤ Σn

j=1aijxj ≤ β · bi .

Primal-Dual Schema for LP

Primal

min
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≥ bi , i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n

Dual

max
m∑
i=1

biyi

s.t.
m∑
i=1

aijyi ≤ cj , j = 1, . . . , n

yi ≥ 0 j = 1, . . . ,m

Primal Complementary Slackness Conditions
Let α ≥ 1.
Then for each 1 ≤ j ≤ n : either xj = 0 or cj/α ≤ Σm

i=1aijyi ≤ cj .

Dual Complementary Slackness Conditions
Let β ≥ 1.
Then for each 1 ≤ i ≤ m : either yi = 0 or bi ≤ Σn

j=1aijxj ≤ β · bi .

Primal-Dual Schema for LP

Primal

min
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≥ bi , i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n

Dual

max
m∑
i=1

biyi

s.t.
m∑
i=1

aijyi ≤ cj , j = 1, . . . , n

yi ≥ 0 j = 1, . . . ,m

Primal Complementary Slackness Conditions
Let α ≥ 1.
Then for each 1 ≤ j ≤ n : either xj = 0 or cj/α ≤ Σm

i=1aijyi ≤ cj .

Dual Complementary Slackness Conditions
Let β ≥ 1.
Then for each 1 ≤ i ≤ m : either yi = 0 or bi ≤ Σn

j=1aijxj ≤ β · bi .

Primal-Dual Schema for LP

Primal

min
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≥ bi , i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n

Dual

max
m∑
i=1

biyi

s.t.
m∑
i=1

aijyi ≤ cj , j = 1, . . . , n

yi ≥ 0 j = 1, . . . ,m

Primal Complementary Slackness Conditions
Let α ≥ 1.
Then for each 1 ≤ j ≤ n : either xj = 0 or cj/α ≤ Σm

i=1aijyi ≤ cj .

Dual Complementary Slackness Conditions
Let β ≥ 1.
Then for each 1 ≤ i ≤ m : either yi = 0 or bi ≤ Σn

j=1aijxj ≤ β · bi .

Primal-Dual Schema for LP

Theorem
If x and y are primal and dual feasible solutions satisfying the
conditions stated above then

n∑
j=1

cjxj ≤ α · β ·
m∑
i=1

biyi

Proof ∑
j

cjxj ≤ α ·
∑
i ,j

aijxjyi ≤ α · β ·
∑
i

biyi

The first inequality follows from the Primal Complementary
Slackness Condition whereas the second follows from the Dual
Complementary Slackness Condition.

Primal-Dual Schema for LP

Theorem
If x and y are primal and dual feasible solutions satisfying the
conditions stated above then

n∑
j=1

cjxj ≤ α · β ·
m∑
i=1

biyi

Proof ∑
j

cjxj ≤ α ·
∑
i ,j

aijxjyi ≤ α · β ·
∑
i

biyi

The first inequality follows from the Primal Complementary
Slackness Condition whereas the second follows from the Dual
Complementary Slackness Condition.

Primal-Dual Schema for LP

Algorithm

I Start with a primal infeasible solution and dual feasible
solution, typically x = 0 and y = 0.

I Iteratively improve the feasibility of the primal solution and
optimality of the dual solution ensuring that a primal feasible
solution is obtained in the end and all conditions are satisfied
for a suitable choice of α and β.

I The primal solution is always extended integrally to ensure
final solution is integral. Need not be true for dual solution.

I Cost of dual solution used as lower bound on OPT.
I Approximation ratio of αβ by the theorem on previous slide.

Primal-Dual Schema for LP

Algorithm

I Start with a primal infeasible solution and dual feasible
solution, typically x = 0 and y = 0.

I Iteratively improve the feasibility of the primal solution and
optimality of the dual solution ensuring that a primal feasible
solution is obtained in the end and all conditions are satisfied
for a suitable choice of α and β.

I The primal solution is always extended integrally to ensure
final solution is integral. Need not be true for dual solution.

I Cost of dual solution used as lower bound on OPT.
I Approximation ratio of αβ by the theorem on previous slide.

Primal-Dual Schema for LP

Algorithm

I Start with a primal infeasible solution and dual feasible
solution, typically x = 0 and y = 0.

I Iteratively improve the feasibility of the primal solution and
optimality of the dual solution ensuring that a primal feasible
solution is obtained in the end and all conditions are satisfied
for a suitable choice of α and β.

I The primal solution is always extended integrally to ensure
final solution is integral. Need not be true for dual solution.

I Cost of dual solution used as lower bound on OPT.
I Approximation ratio of αβ by the theorem on previous slide.

Primal-Dual Schema for LP

Algorithm

I Start with a primal infeasible solution and dual feasible
solution, typically x = 0 and y = 0.

I Iteratively improve the feasibility of the primal solution and
optimality of the dual solution ensuring that a primal feasible
solution is obtained in the end and all conditions are satisfied
for a suitable choice of α and β.

I The primal solution is always extended integrally to ensure
final solution is integral. Need not be true for dual solution.

I Cost of dual solution used as lower bound on OPT.
I Approximation ratio of αβ by the theorem on previous slide.

Primal-Dual Schema for LP

Algorithm

I Start with a primal infeasible solution and dual feasible
solution, typically x = 0 and y = 0.

I Iteratively improve the feasibility of the primal solution and
optimality of the dual solution ensuring that a primal feasible
solution is obtained in the end and all conditions are satisfied
for a suitable choice of α and β.

I The primal solution is always extended integrally to ensure
final solution is integral. Need not be true for dual solution.

I Cost of dual solution used as lower bound on OPT.

I Approximation ratio of αβ by the theorem on previous slide.

Primal-Dual Schema for LP

Algorithm

I Start with a primal infeasible solution and dual feasible
solution, typically x = 0 and y = 0.

I Iteratively improve the feasibility of the primal solution and
optimality of the dual solution ensuring that a primal feasible
solution is obtained in the end and all conditions are satisfied
for a suitable choice of α and β.

I The primal solution is always extended integrally to ensure
final solution is integral. Need not be true for dual solution.

I Cost of dual solution used as lower bound on OPT.
I Approximation ratio of αβ by the theorem on previous slide.

Outline

Primal-Dual Schema
Primal-Dual Schema for LP
Extension to SDP
Application to MAXCUT

Problems
Undirected BALANCED SEPARATOR
Undirected SPARSEST CUT

References

Appendix

Primal-Dual Schema for SDP

Primal

max C • X
s.t. Aj • X ≤ bj ∀j ∈ [m]

X � 0

Dual

min b · y
m∑
j=1

Ajyj � C

y ≥ 0

I y = 〈y1, y2, . . . , ym〉 is the dual variable and
b = 〈b1, b2, . . . , bm〉.

I Strong Duality holds under Slater Condition.
I Assume A1 = I and b1 = R to get Tr(X) ≤ R i.e. a simple

scaling constant. Present in most of SDP relaxation
combinatorial optimization problems.

Primal-Dual Schema for SDP

Primal

max C • X
s.t. Aj • X ≤ bj ∀j ∈ [m]

X � 0

Dual

min b · y
m∑
j=1

Ajyj � C

y ≥ 0

I y = 〈y1, y2, . . . , ym〉 is the dual variable and
b = 〈b1, b2, . . . , bm〉.

I Strong Duality holds under Slater Condition.
I Assume A1 = I and b1 = R to get Tr(X) ≤ R i.e. a simple

scaling constant. Present in most of SDP relaxation
combinatorial optimization problems.

Primal-Dual Schema for SDP

Primal

max C • X
s.t. Aj • X ≤ bj ∀j ∈ [m]

X � 0

Dual

min b · y
m∑
j=1

Ajyj � C

y ≥ 0

I y = 〈y1, y2, . . . , ym〉 is the dual variable and
b = 〈b1, b2, . . . , bm〉.

I Strong Duality holds under Slater Condition.
I Assume A1 = I and b1 = R to get Tr(X) ≤ R i.e. a simple

scaling constant. Present in most of SDP relaxation
combinatorial optimization problems.

Primal-Dual Schema for SDP

Primal

max C • X
s.t. Aj • X ≤ bj ∀j ∈ [m]

X � 0

Dual

min b · y
m∑
j=1

Ajyj � C

y ≥ 0

I y = 〈y1, y2, . . . , ym〉 is the dual variable and
b = 〈b1, b2, . . . , bm〉.

I Strong Duality holds under Slater Condition.
I Assume A1 = I and b1 = R to get Tr(X) ≤ R i.e. a simple

scaling constant. Present in most of SDP relaxation
combinatorial optimization problems.

Primal-Dual Schema for SDP

Primal

max C • X
s.t. Aj • X ≤ bj ∀j ∈ [m]

X � 0

Dual

min b · y
m∑
j=1

Ajyj � C

y ≥ 0

I y = 〈y1, y2, . . . , ym〉 is the dual variable and
b = 〈b1, b2, . . . , bm〉.

I Strong Duality holds under Slater Condition.
I Assume A1 = I and b1 = R to get Tr(X) ≤ R i.e. a simple

scaling constant. Present in most of SDP relaxation
combinatorial optimization problems.

Primal-Dual Schema for SDP

Primal

max C • X
s.t. Aj • X ≤ bj ∀j ∈ [m]

X � 0

Dual

min b · y
m∑
j=1

Ajyj � C

y ≥ 0

I y = 〈y1, y2, . . . , ym〉 is the dual variable and
b = 〈b1, b2, . . . , bm〉.

I Strong Duality holds under Slater Condition.
I Assume A1 = I and b1 = R to get Tr(X) ≤ R i.e. a simple

scaling constant. Present in most of SDP relaxation
combinatorial optimization problems.

Primal-Dual Schema for SDP

Primal

max C • X
s.t. Aj • X ≤ bj ∀j ∈ [m]

X � 0

Dual

min b · y
m∑
j=1

Ajyj � C

y ≥ 0

I y = 〈y1, y2, . . . , ym〉 is the dual variable and
b = 〈b1, b2, . . . , bm〉.

I Strong Duality holds under Slater Condition.

I Assume A1 = I and b1 = R to get Tr(X) ≤ R i.e. a simple
scaling constant. Present in most of SDP relaxation
combinatorial optimization problems.

Primal-Dual Schema for SDP

Primal

max C • X
s.t. Aj • X ≤ bj ∀j ∈ [m]

X � 0

Dual

min b · y
m∑
j=1

Ajyj � C

y ≥ 0

I y = 〈y1, y2, . . . , ym〉 is the dual variable and
b = 〈b1, b2, . . . , bm〉.

I Strong Duality holds under Slater Condition.
I Assume A1 = I and b1 = R to get Tr(X) ≤ R i.e. a simple

scaling constant. Present in most of SDP relaxation
combinatorial optimization problems.

Computing near optimal solution of a SDP using
Primal-Dual Approach

I Let current guess for optimum be α.

I Algorithm either tries to construct a primal feasible PSD
matrix X with objective value > α or a dual feasible solution
with value at most (1 + δ)α for arbitrarily small δ > 0.

I Iteratively constructs X(1),X(2),X(3),
I Starts with X(1) = R

n I.
I Takes help from an auxillary algorithm ORACLE. ORACLE’s

task is to:

I Find X and y such that X � 0 and y ≥ 0
I Try to produce a feasible dual by the end whose value is at

most (1 + δ)α for some arbitrarily small δ > 0

Computing near optimal solution of a SDP using
Primal-Dual Approach

I Let current guess for optimum be α.
I Algorithm either tries to construct a primal feasible PSD

matrix X with objective value > α or a dual feasible solution
with value at most (1 + δ)α for arbitrarily small δ > 0.

I Iteratively constructs X(1),X(2),X(3),
I Starts with X(1) = R

n I.
I Takes help from an auxillary algorithm ORACLE. ORACLE’s

task is to:

I Find X and y such that X � 0 and y ≥ 0
I Try to produce a feasible dual by the end whose value is at

most (1 + δ)α for some arbitrarily small δ > 0

Computing near optimal solution of a SDP using
Primal-Dual Approach

I Let current guess for optimum be α.
I Algorithm either tries to construct a primal feasible PSD

matrix X with objective value > α or a dual feasible solution
with value at most (1 + δ)α for arbitrarily small δ > 0.

I Iteratively constructs X(1),X(2),X(3),

I Starts with X(1) = R
n I.

I Takes help from an auxillary algorithm ORACLE. ORACLE’s
task is to:

I Find X and y such that X � 0 and y ≥ 0
I Try to produce a feasible dual by the end whose value is at

most (1 + δ)α for some arbitrarily small δ > 0

Computing near optimal solution of a SDP using
Primal-Dual Approach

I Let current guess for optimum be α.
I Algorithm either tries to construct a primal feasible PSD

matrix X with objective value > α or a dual feasible solution
with value at most (1 + δ)α for arbitrarily small δ > 0.

I Iteratively constructs X(1),X(2),X(3),
I Starts with X(1) = R

n I.

I Takes help from an auxillary algorithm ORACLE. ORACLE’s
task is to:

I Find X and y such that X � 0 and y ≥ 0
I Try to produce a feasible dual by the end whose value is at

most (1 + δ)α for some arbitrarily small δ > 0

Computing near optimal solution of a SDP using
Primal-Dual Approach

I Let current guess for optimum be α.
I Algorithm either tries to construct a primal feasible PSD

matrix X with objective value > α or a dual feasible solution
with value at most (1 + δ)α for arbitrarily small δ > 0.

I Iteratively constructs X(1),X(2),X(3),
I Starts with X(1) = R

n I.
I Takes help from an auxillary algorithm ORACLE. ORACLE’s

task is to:

I Find X and y such that X � 0 and y ≥ 0
I Try to produce a feasible dual by the end whose value is at

most (1 + δ)α for some arbitrarily small δ > 0

Computing near optimal solution of a SDP using
Primal-Dual Approach

I Let current guess for optimum be α.
I Algorithm either tries to construct a primal feasible PSD

matrix X with objective value > α or a dual feasible solution
with value at most (1 + δ)α for arbitrarily small δ > 0.

I Iteratively constructs X(1),X(2),X(3),
I Starts with X(1) = R

n I.
I Takes help from an auxillary algorithm ORACLE. ORACLE’s

task is to:
I Find X and y such that X � 0 and y ≥ 0

I Try to produce a feasible dual by the end whose value is at
most (1 + δ)α for some arbitrarily small δ > 0

Computing near optimal solution of a SDP using
Primal-Dual Approach

I Let current guess for optimum be α.
I Algorithm either tries to construct a primal feasible PSD

matrix X with objective value > α or a dual feasible solution
with value at most (1 + δ)α for arbitrarily small δ > 0.

I Iteratively constructs X(1),X(2),X(3),
I Starts with X(1) = R

n I.
I Takes help from an auxillary algorithm ORACLE. ORACLE’s

task is to:
I Find X and y such that X � 0 and y ≥ 0
I Try to produce a feasible dual by the end whose value is at

most (1 + δ)α for some arbitrarily small δ > 0

MWT

MWT Algorithm
Fix ε < 1

2 and let ε′ = − ln(1− ε). In every round t, for
t = 1, 2, 3, . . .

1. Compute

W(t) = (1− ε)
∑t−1

τ=1 M(t)

= exp

(
−ε′

(
t−1∑
τ=1

M(t)

))

2. Use the density matrix P(t) = W(t)

Tr(W(t))
and observe the event

M(t).

MWT

MWT Algorithm
Fix ε < 1

2 and let ε′ = − ln(1− ε). In every round t, for
t = 1, 2, 3, . . .
1. Compute

W(t) = (1− ε)
∑t−1

τ=1 M(t)

= exp

(
−ε′

(
t−1∑
τ=1

M(t)

))

2. Use the density matrix P(t) = W(t)

Tr(W(t))
and observe the event

M(t).

MWT

MWT Algorithm
Fix ε < 1

2 and let ε′ = − ln(1− ε). In every round t, for
t = 1, 2, 3, . . .
1. Compute

W(t) = (1− ε)
∑t−1

τ=1 M(t)

= exp

(
−ε′

(
t−1∑
τ=1

M(t)

))

2. Use the density matrix P(t) = W(t)

Tr(W(t))
and observe the event

M(t).

MWT

MWT Theorem
The Matrix Multiplicative Weights algorithm generates density
matrices P(1),P(2), . . . ,P(T) such that:∑T

t=1 M(t) • P(t) ≤ (1 + ε)λn(
∑T

t=1 M(t)) + ln n
ε

Proof Idea
Track changes in Tr(W(t)) over time and use Golden-Thompson
inequality.

MWT

MWT Theorem
The Matrix Multiplicative Weights algorithm generates density
matrices P(1),P(2), . . . ,P(T) such that:∑T

t=1 M(t) • P(t) ≤ (1 + ε)λn(
∑T

t=1 M(t)) + ln n
ε

Proof Idea
Track changes in Tr(W(t)) over time and use Golden-Thompson
inequality.

MWT

Proof

Tr(W(t+1)) = Tr(exp(−ε′
t∑

τ=1

M(τ)))

≤ Tr(exp(−ε′
t−1∑
τ=1

M(τ)) exp(−ε′M(t)))

= W(t) • exp(−ε′M(t))

≤W(t) • (I− εM(t))

= Tr(W(t)) · (1− εM(t) • P(t))

≤ Tr(W(t)) · exp(−εM(t) • P(t))

MWT

Proof
Since Tr(W1) = Tr(I) = n, by induction,

Tr(WT+1) ≤ n exp(−ε
T∑
t=1

M(t) • P(t))

On the other hand, since Tr(eA) =
∑n

k=1 e
λk (A) ≥ eλn(A),

Tr(WT+1) = Tr(exp(−ε′
T∑
t=1

M(t))) ≥ exp(−ε′λn(
T∑
t=1

M(t)))

Thus,

exp(−ε′λn(
T∑
t=1

M(t))) ≤ n exp(−ε
T∑
t=1

M(t) • P(t))

MWT

I A feasible dual is the one in which the slack matrix∑m
j=1 Ajyj − C � 0

I MWT theorem replaces ORACLE’s task to be replaced by the
following steps:

I Focus on finding a slack matrix which has a non-negative inner
product with the current solution matrix X(t)

I If the ORACLE manages to do this even for a small number of
steps, MWT theorem guarantees that the average slack matrix
over these steps would be almost psd

I Saving:
Producing a psd matrix → linear condition

MWT

I A feasible dual is the one in which the slack matrix∑m
j=1 Ajyj − C � 0

I MWT theorem replaces ORACLE’s task to be replaced by the
following steps:

I Focus on finding a slack matrix which has a non-negative inner
product with the current solution matrix X(t)

I If the ORACLE manages to do this even for a small number of
steps, MWT theorem guarantees that the average slack matrix
over these steps would be almost psd

I Saving:
Producing a psd matrix → linear condition

MWT

I A feasible dual is the one in which the slack matrix∑m
j=1 Ajyj − C � 0

I MWT theorem replaces ORACLE’s task to be replaced by the
following steps:

I Focus on finding a slack matrix which has a non-negative inner
product with the current solution matrix X(t)

I If the ORACLE manages to do this even for a small number of
steps, MWT theorem guarantees that the average slack matrix
over these steps would be almost psd

I Saving:
Producing a psd matrix → linear condition

MWT

I A feasible dual is the one in which the slack matrix∑m
j=1 Ajyj − C � 0

I MWT theorem replaces ORACLE’s task to be replaced by the
following steps:

I Focus on finding a slack matrix which has a non-negative inner
product with the current solution matrix X(t)

I If the ORACLE manages to do this even for a small number of
steps, MWT theorem guarantees that the average slack matrix
over these steps would be almost psd

I Saving:
Producing a psd matrix → linear condition

MWT

I A feasible dual is the one in which the slack matrix∑m
j=1 Ajyj − C � 0

I MWT theorem replaces ORACLE’s task to be replaced by the
following steps:

I Focus on finding a slack matrix which has a non-negative inner
product with the current solution matrix X(t)

I If the ORACLE manages to do this even for a small number of
steps, MWT theorem guarantees that the average slack matrix
over these steps would be almost psd

I Saving:
Producing a psd matrix → linear condition

MWT

I A feasible dual is the one in which the slack matrix∑m
j=1 Ajyj − C � 0

I MWT theorem replaces ORACLE’s task to be replaced by the
following steps:

I Focus on finding a slack matrix which has a non-negative inner
product with the current solution matrix X(t)

I If the ORACLE manages to do this even for a small number of
steps, MWT theorem guarantees that the average slack matrix
over these steps would be almost psd

I Saving:
Producing a psd matrix → linear condition

Computing near optimal solution of a SDP using
Primal-Dual Approach

Description of ORACLE
ORACLE searches for a vector b from the polytope
Dα = {y : y ≥ 0, b · y ≤ α} such that

m∑
j=1

(Aj • X(t))yj − (C • X(t)) ≥ 0 (1)

If ORACLE succeeds in finding such a y then X(t) is either primal
infeasible or has value C • X(t) ≤ α.
Proof: Suppose this is not the case. Then

m∑
j=1

(Aj • X(t))yj − (C • X(t)) ≤
m∑
j=1

bjyj − (C • X(t)) < α− α = 0

which contradicts (1)

Computing near optimal solution of a SDP using
Primal-Dual Approach

I If ORACLE declares that there is no such y ∈ Dα, then X(t) is
a primal feasible solution with objective value at least α

I y need not be dual feasible
I Primal-Dual SDP algorithm depends on width parameter, ρ.

width of ORACLE
Smallest ρ such that for every primal candidate X, the vector
y ∈ Dα returned by the ORACLE satisfies ‖Ajyj − C‖ ≤ ρ

I Higher width equals slow progress

Computing near optimal solution of a SDP using
Primal-Dual Approach

Primal-Dual Algorithm for SDP
Set X(1) = R

n I. Let ε = δα
2ρR , and let ε′ = − ln(1− ε). Let

T = 8ρ2R2 ln(n)
δ2α2 . For t = 1, 2, . . . ,T :

1. Run the ORACLE with candidate solution X(t).
2. If the ORACLE fails, stop and output X(t).
3. Else, let y(t) be the vector generated by ORACLE.

4. Let M(t) = (Σm
j=1Ajy

(t)
j − C + ρI)/2ρ.

5. Compute W(t+1) = (1− ε)Σt
τ=1M

(τ)
= exp

(
− ε′(Σt

τ=1M
(τ))
)
.

6. Set X(t+1) = RW(t+1)

Tr(W(t+1) and continue.

Computing near optimal solution of a SDP using
Primal-Dual Approach

Theorem 1
In the Primal-Dual SDP algorithm, assume that the ORACLE never
fails for T = 8ρ2R2 ln(n)

δ2α2 iterations. Let ȳ = δα
R e1 + 1

T ΣT
t=1y

(t).
Then ȳ is a feasible dual solution with objective value at most
(1 + δ)α.

Proof.
...mmw used...

Outline

Primal-Dual Schema
Primal-Dual Schema for LP
Extension to SDP
Application to MAXCUT

Problems
Undirected BALANCED SEPARATOR
Undirected SPARSEST CUT

References

Appendix

Approximating MAXCUT SDP for d -regular graphs

MAXCUT SDP in vector and matrix form (ignoring a factor of 1
4).

max
∑
{i ,j}∈E

‖vi − vj‖2

∀i ∈ [n] :‖vi‖2 ≤ 1

maxC • X
∀i ∈ [n] :Xii ≤ 1

X � 0

Dual of SDP:

minΣn
i=1xi

diag(x) � C
∀i ∈ [n] :xi ≥ 0

I C is the combinatorial Laplacian of the graph.
I diag(x) is the diagonal matrix with the vector x on the

diagonal.

Approximating MAXCUT SDP for d -regular graphs

Combinatorial Laplacian of a graph

C = D− A

where D is the degree matrix of the graph (diagonal matrix with
diagonal entries as the number of edges incident on that vertex)
and A is the adjacency matrix the graph.

I Intuitively, Cii = Σi 6=jc{i ,j} and Cij = −cij
I If d is maximum degree of the graph, then 0 � C � 2d I.

(Proof: Using xTAx ≥ 0)
I If vi are the vectors obtained from the Cholesky decomposition

of X, then C • X = Σ{i ,j}∈Ec{i ,j}‖vi − vj‖2

I When G is d-regular, C = I− 1
dA

Approximating MAXCUT SDP for d -regular graphs

I nd ≤ α ≤ 3nd (Property of d-regular graph).
I Trace of optimal X is n.
I If width parameter ρ is O(d), then number of iterations is

O(log n).
I Each invocation of ORACLE and matrix exponentiation takes

Õ(m) time.
I Approximate Matrix Exponentiation by Johnson-Lindenstrauss

Dimension Reduction.
I Number of non-zero matrix entries in C is O(m).

Approximating MAXCUT SDP for d -regular graphs:
Description of ORACLE

I Given a candidate solution X, find a vector x ≥ 0 such that
Σixi ≤ α and ΣixiXii − C • X ≥ 0

I Intuitively, to make ΣixiXii as large as possible, make xi large
whenever Xii is large.

I However, also ensure that xi ≤ O(αn) = O(d) to ensure the
width bound: ‖diag(x)− C‖ ≤ O(d)

Approximating MAXCUT SDP for d -regular graphs:
Description of ORACLE

1. C • X ≤ α. Set all xi = α
n . Since ΣiXii = Tr(X) = n,

ΣixiXii − C • X ≥ α

n
ΣiXii − α = 0

2. C • X ≥ α. Let C • X = λα for some λ ≥ 1. Since C � 2d I,
λα = C • X ≤ 2nd . Also, α ≥ nd . Hence, λ ≤ 2.
Let S := {i : Xii ≥ λ}. Let k := Σi∈SXii .
If k ≥ δ1n for some constant δ1, set xi = λα

k ∀i ∈ S and
xi = 0∀i /∈ S . Then Σixi = |S |λαk ≤ α since
k ≥ ΣiXii ≥ λ|S |. Then
ΣixiXii − C • X = λα

k Σi∈SXii − λα ≥ 0.

Approximating MAXCUT SDP for d -regular graphs:
Description of ORACLE

3. Otherwise, we construct a feasible primal solution X of value
≥ (1− δ)α. Let vi be Cholesky decomposition of X.
Set v′i := vi for i /∈ S and v′i = v0 for i ∈ S , for some fixed
unit vector v0. Let X̃ be the Gram matrix of v′.
Let ES be the set of edges with at least one endpoint in S .
We have C • (X̃− X) ≥ −Σ{i ,j}∈ES

‖vi − vj‖2. Also,∑
{i ,j}∈ES

‖vi − vj‖2 ≤
∑
{i ,j}∈ES

2[‖vi‖2 + ‖vj‖2]

≤ 2d
∑
i∈S
‖vi‖2 + 2dλ|S | ≤ 4dk ≤ 4δ1nd

Hence C • X̃ ≥ λα− 4δ1nd . For error parameter δ, choose
δ1 ≤ δλ

4 to lower bound RHS by (1− δ)λα. So X∗ = 1
λ X̃ is

feasible with value ≥ (1− δ)α.

Primal-Dual approach: Extension to minimization problems

I ORACLE finds a vector y from the polytope
Dα = {y : y ≥ 0,b · y ≥ α} such that
Σm
j=1(Aj • X)yj − (C • X) < 0.

I Matrix exponentiation is computed with base (1 + ε) rather
than (1− ε).

I Allow ORACLE to find a matrix F(t) such that for all primal
feasible X, F(t) • X ≤ C • X and a vector y(t) ∈ Dα such that

Σm
j=1(Aj • X(t))y

(t)
j − (F(t) • X) ≤ 0

I We can replace C by F(t) (which can be decided by us). If
F(t) � C, then since any primal feasible X is PSD, we have
F(t) • X ≤ C • X. So if suffices to find F(t) � C.

I This is done to reduce the width parameter, ρ.

I M := (Σm
j=1Ajy

(t)
j − F(t) + ρI)/2ρ

Primal-Dual approach: Extension to minimization problems

Theorem
In the modified Primal-Dual Algorithm for a minimization SDP as
described in the previous slide, if the ORACLE never fails for
T = 8ρ2R2 ln(n)

δ2α2 iterations, then ȳ = δα
R e1 + 1

T ΣT
t=1y

(t) is a feasible
dual solution with dual objective value at least (1− δ)α.

Proof.
Similar to maximization theorem’s proof.

Matrix exponentiation

eM =
∞∑
i=0

Mi

i !
= I +

M
1

+
M2

2!
+ · · ·

I e0 = I
I eaXebX = e(a+b)X where a and b are reals
I exp(A + B) 6= exp(A) + exp(B) in general.
I exp(AT) = (exp A)T

I exp(A) is PSD for all symmetric A since
exp(A) = exp(1

2A)T exp(1
2A).

I Cholesky decomposition of exp(A) is exp(1
2A).

I Golden-Thompson Inequality:
Tr exp(A + B) ≤ Tr (exp(A) exp(B))

Outline

Primal-Dual Schema
Primal-Dual Schema for LP
Extension to SDP
Application to MAXCUT

Problems
Undirected BALANCED SEPARATOR
Undirected SPARSEST CUT

References

Appendix

Outline

Primal-Dual Schema
Primal-Dual Schema for LP
Extension to SDP
Application to MAXCUT

Problems
Undirected BALANCED SEPARATOR
Undirected SPARSEST CUT

References

Appendix

Undirected BALANCED SEPARATOR

Undirected Balanced Separator Problem
Given a graph G (V ,E) with |V | = n, |E | = m, and capacity ce on
edge e ∈ E , find the c-balanced cut with minimum capacity. A cut
(S ,S) is called c-balanced if |S | ≥ cn and |S | ≥ cn.

Undirected BALANCED SEPARATOR

Undirected Balanced Separator Problem
Given a graph G (V ,E) with |V | = n, |E | = m, and capacity ce on
edge e ∈ E , find the c-balanced cut with minimum capacity. A cut
(S ,S) is called c-balanced if |S | ≥ cn and |S | ≥ cn.

t pseudo-approximation
A t pseudo-approximation for minimum c-BALANCED SEPARATOR
problem is a c ′-balanced cut for some constant c ′ whose expansion is
within a factor of t of that of minimum c-BALANCED SEPARATOR
(c ′ ≤ ct).

Undirected BALANCED SEPARATOR

Undirected Balanced Separator Problem
Given a graph G (V ,E) with |V | = n, |E | = m, and capacity ce on
edge e ∈ E , find the c-balanced cut with minimum capacity. A cut
(S ,S) is called c-balanced if |S | ≥ cn and |S | ≥ cn.

Theorem
An O(log n) pseudo-approximation to the minimum c-BALANCED
SEPARATOR can be computed in Õ(m + n1.5) time using O(log2(n))
single commodity flow computations.

Undirected BALANCED SEPARATOR

SDP

min
∑

e={i ,j}∈E

ce‖vi − vj‖2

∀i : ‖vi‖2 = 1

∀p :
k−1∑
j=1

‖vij − vij+1‖
2 ≥ ‖vi1 − vik‖

2

∀S :
∑
i ,j∈S
‖vi − vj‖2 ≥ an2

minC • X
∀i : Xii = 1

∀p : Tp • X ≥ 0

∀S : KS • X ≥ an2

X � 0

Undirected BALANCED SEPARATOR

Notations
I Assign vectors vi to nodes in G . Let X be the Gram matrix of

these vectors.
I C is the Combinatorial Laplacian of the graph.
I For any subset S of the nodes, KS is defined to be the

Laplacian of the graph where all nodes in S are connected by
edges, all other edges are absent.

I |S | ≥ (1− ε)n
I For a generic path p = (i1, i2, . . . , ik) of nodes in the complete

graph, Tp is the difference of the Laplacian of p and that of a
single edge connecting its endpoints i1 and ik .

I a = 4[c(1− c)− ε]

Undirected BALANCED SEPARATOR

Dual Program

max
∑
i

xi + an2
∑
S

zS

C � diag(x) +
∑
p

fpTp +
∑
S

zSKS

∀p,S : fp, zS ≥ 0

Notations
I Variable xi for every node i , fp for every path p and zS for

every set S of size at least (1− ε)n

Undirected BALANCED SEPARATOR : Oracle

I Let α be the current guess of the solution.
I Let X be the current solution generated by the Primal-Dual

algorithm.
I Tr(X) = n
I Using MWT Theorem for minimization problems, ORACLE

needs to find variables xi , fp ≥ 0, zS ≥ 0 and a matrix F � C such
that

∑
i xi + an2∑

S zS ≥ α and
diag(x) • X +

∑
p fp(Tp • X) +

∑
S zS(K • X)− (F • X) ≤ 0

I If the ORACLE succeeds, then the matrix returned as feedback is
M = diag(x) +

∑
p fpTp +

∑
S zSKS − F

I ORACLE needs to ensure a width of Õ(αn)

Undirected BALANCED SEPARATOR : Oracle

I Let α be the current guess of the solution.

I Let X be the current solution generated by the Primal-Dual
algorithm.

I Tr(X) = n
I Using MWT Theorem for minimization problems, ORACLE

needs to find variables xi , fp ≥ 0, zS ≥ 0 and a matrix F � C such
that

∑
i xi + an2∑

S zS ≥ α and
diag(x) • X +

∑
p fp(Tp • X) +

∑
S zS(K • X)− (F • X) ≤ 0

I If the ORACLE succeeds, then the matrix returned as feedback is
M = diag(x) +

∑
p fpTp +

∑
S zSKS − F

I ORACLE needs to ensure a width of Õ(αn)

Undirected BALANCED SEPARATOR : Oracle

I Let α be the current guess of the solution.
I Let X be the current solution generated by the Primal-Dual

algorithm.

I Tr(X) = n
I Using MWT Theorem for minimization problems, ORACLE

needs to find variables xi , fp ≥ 0, zS ≥ 0 and a matrix F � C such
that

∑
i xi + an2∑

S zS ≥ α and
diag(x) • X +

∑
p fp(Tp • X) +

∑
S zS(K • X)− (F • X) ≤ 0

I If the ORACLE succeeds, then the matrix returned as feedback is
M = diag(x) +

∑
p fpTp +

∑
S zSKS − F

I ORACLE needs to ensure a width of Õ(αn)

Undirected BALANCED SEPARATOR : Oracle

I Let α be the current guess of the solution.
I Let X be the current solution generated by the Primal-Dual

algorithm.
I Tr(X) = n

I Using MWT Theorem for minimization problems, ORACLE
needs to find variables xi , fp ≥ 0, zS ≥ 0 and a matrix F � C such
that

∑
i xi + an2∑

S zS ≥ α and
diag(x) • X +

∑
p fp(Tp • X) +

∑
S zS(K • X)− (F • X) ≤ 0

I If the ORACLE succeeds, then the matrix returned as feedback is
M = diag(x) +

∑
p fpTp +

∑
S zSKS − F

I ORACLE needs to ensure a width of Õ(αn)

Undirected BALANCED SEPARATOR : Oracle

I Let α be the current guess of the solution.
I Let X be the current solution generated by the Primal-Dual

algorithm.
I Tr(X) = n
I Using MWT Theorem for minimization problems, ORACLE

needs to find variables xi , fp ≥ 0, zS ≥ 0 and a matrix F � C such
that

∑
i xi + an2∑

S zS ≥ α and
diag(x) • X +

∑
p fp(Tp • X) +

∑
S zS(K • X)− (F • X) ≤ 0

I If the ORACLE succeeds, then the matrix returned as feedback is
M = diag(x) +

∑
p fpTp +

∑
S zSKS − F

I ORACLE needs to ensure a width of Õ(αn)

Undirected BALANCED SEPARATOR : Oracle

I Let α be the current guess of the solution.
I Let X be the current solution generated by the Primal-Dual

algorithm.
I Tr(X) = n
I Using MWT Theorem for minimization problems, ORACLE

needs to find variables xi , fp ≥ 0, zS ≥ 0 and a matrix F � C such
that

∑
i xi + an2∑

S zS ≥ α and
diag(x) • X +

∑
p fp(Tp • X) +

∑
S zS(K • X)− (F • X) ≤ 0

I If the ORACLE succeeds, then the matrix returned as feedback is
M = diag(x) +

∑
p fpTp +

∑
S zSKS − F

I ORACLE needs to ensure a width of Õ(αn)

Undirected BALANCED SEPARATOR : Oracle

I Let α be the current guess of the solution.
I Let X be the current solution generated by the Primal-Dual

algorithm.
I Tr(X) = n
I Using MWT Theorem for minimization problems, ORACLE

needs to find variables xi , fp ≥ 0, zS ≥ 0 and a matrix F � C such
that

∑
i xi + an2∑

S zS ≥ α and
diag(x) • X +

∑
p fp(Tp • X) +

∑
S zS(K • X)− (F • X) ≤ 0

I If the ORACLE succeeds, then the matrix returned as feedback is
M = diag(x) +

∑
p fpTp +

∑
S zSKS − F

I ORACLE needs to ensure a width of Õ(αn)

Undirected BALANCED SEPARATOR : Oracle

Implementation: Basic Idea

I Given a candidate solution X, check if all Xii are O(1).

I If a significant fraction of them aren’t, punish X by setting xi
in a similar way as in MAX-CUT

I Check if KV • X ≥ Ω(n2)

I If not, set zS appropriately to punish X.

I If both the above conditions are satisfied, do a flow
computation and interpret fp variables as multicommodity flow
in the graph.

Undirected BALANCED SEPARATOR : Oracle

Implementation: Basic Idea

I Given a candidate solution X, check if all Xii are O(1).

I If a significant fraction of them aren’t, punish X by setting xi
in a similar way as in MAX-CUT

I Check if KV • X ≥ Ω(n2)

I If not, set zS appropriately to punish X.

I If both the above conditions are satisfied, do a flow
computation and interpret fp variables as multicommodity flow
in the graph.

Undirected BALANCED SEPARATOR : Oracle

Implementation: Basic Idea

I Given a candidate solution X, check if all Xii are O(1).
I If a significant fraction of them aren’t, punish X by setting xi

in a similar way as in MAX-CUT

I Check if KV • X ≥ Ω(n2)

I If not, set zS appropriately to punish X.

I If both the above conditions are satisfied, do a flow
computation and interpret fp variables as multicommodity flow
in the graph.

Undirected BALANCED SEPARATOR : Oracle

Implementation: Basic Idea

I Given a candidate solution X, check if all Xii are O(1).
I If a significant fraction of them aren’t, punish X by setting xi

in a similar way as in MAX-CUT
I Check if KV • X ≥ Ω(n2)

I If not, set zS appropriately to punish X.

I If both the above conditions are satisfied, do a flow
computation and interpret fp variables as multicommodity flow
in the graph.

Undirected BALANCED SEPARATOR : Oracle

Implementation: Basic Idea

I Given a candidate solution X, check if all Xii are O(1).
I If a significant fraction of them aren’t, punish X by setting xi

in a similar way as in MAX-CUT
I Check if KV • X ≥ Ω(n2)

I If not, set zS appropriately to punish X.

I If both the above conditions are satisfied, do a flow
computation and interpret fp variables as multicommodity flow
in the graph.

Undirected BALANCED SEPARATOR : Oracle

Implementation: Basic Idea

I Given a candidate solution X, check if all Xii are O(1).
I If a significant fraction of them aren’t, punish X by setting xi

in a similar way as in MAX-CUT
I Check if KV • X ≥ Ω(n2)

I If not, set zS appropriately to punish X.

I If both the above conditions are satisfied, do a flow
computation and interpret fp variables as multicommodity flow
in the graph.

Undirected BALANCED SEPARATOR : Oracle

Lemma 1
For at least a a

32 fraction of directions u, there are efficiently
computable sets S and T , each of size at least a

128n , such that for
any i ∈ S and j ∈ T , (vj − vi) · u ≥ a

48
√
n

Proof Idea
Consider the Gaussian beahviour of projections on a random vector
u the median value of vi · u = m
S = {i : vi · u ≤ m − δ}
T = {i : vi · u ≥ m}
δ = a

48
√
n

Undirected BALANCED SEPARATOR : Oracle

Lemma 1
For at least a a

32 fraction of directions u, there are efficiently
computable sets S and T , each of size at least a

128n , such that for
any i ∈ S and j ∈ T , (vj − vi) · u ≥ a

48
√
n

Proof Idea
Consider the Gaussian beahviour of projections on a random vector
u the median value of vi · u = m
S = {i : vi · u ≤ m − δ}
T = {i : vi · u ≥ m}
δ = a

48
√
n

Undirected BALANCED SEPARATOR : Oracle

Lemma 2
Let S ⊆ V be a set of nodes of size Ω(n). Suppose for all i ∈ S ,
vectors vi of length O(1) are given such that∑

i ,j∈S ‖vi − vj‖2 ≥ Ω(n2), and a quantity α. Then there is an
algorithm, which, using a single max-flow computation, either
outputs a valid O(log(n)α

n)-regular flow fp such that∑
ij fij‖vi − vj‖2 ≥ α, or a c ′-balanced cut of expansion

O(log(n)αn).

Proof Idea
Using Lemma 1

Undirected BALANCED SEPARATOR : Oracle

Lemma 2
Let S ⊆ V be a set of nodes of size Ω(n). Suppose for all i ∈ S ,
vectors vi of length O(1) are given such that∑

i ,j∈S ‖vi − vj‖2 ≥ Ω(n2), and a quantity α. Then there is an
algorithm, which, using a single max-flow computation, either
outputs a valid O(log(n)α

n)-regular flow fp such that∑
ij fij‖vi − vj‖2 ≥ α, or a c ′-balanced cut of expansion

O(log(n)αn).

Proof Idea
Using Lemma 1

Undirected BALANCED SEPARATOR : Oracle

ORACLE Description
Given a candidate solution X, the ORACLE runs the following steps
(set all unspecified variables, including F to 0)
1. Assume, WLOG, X11 ≤ X22 ≤ · · · ≤ Xnn. Define

h = (1− ε)n + 1. If Xhh ≥ 2, set xi = − α
εn for i ≥ k and

xi = 2α
(1−ε)n for i < k . Then,

diag(x) • X =
∑
i≥k
− α
εn

Xii +
∑
i<k

2α
(1− ε)n

Xii

≤ − α
εn
· 2 · εn +

2α
(1− ε)n

· (n − 2εn) ≤ 0

Since all xi = O(αn), ‖diag(x)‖ ≤ O(αn)

Undirected BALANCED SEPARATOR : Oracle

ORACLE Description
Given a candidate solution X, the ORACLE runs the following steps
(set all unspecified variables, including F to 0)
2. Assume that for all but εn exceptional nodes i , Xii ≤ 2. Let

W := {i : Xii ≤ 2} and S := V \W . Since |S | ≥ (1− ε)n so
we have KS • X ≥ an2 in the SDP. If KS • X ≤ an2

2 , choose
zS = 2α

an2 and all xi = −α
n . Then,(

−α
n
I +

2α
an2KS

)
• X ≤ α− α = 0

Since, 0 � KS � nI, ‖ − α
n I + 2α

an2 KS‖ ≤ O(αn)

Undirected BALANCED SEPARATOR : Oracle

ORACLE Description
Given a candidate solution X, the ORACLE runs the following steps
(set all unspecified variables, including F to 0)

3. Assume KS • X ≥ an2

2 , and v1, v2, . . . , vn be the vectors
obtained from the Cholesky decomposition of X. For all nodes
i ∈ S , ‖vi‖2 ≤ 2. Also, KS • X ≥ an2

2 implies∑
i ,j∈S ‖vi − vj‖2 ≥ an2

2 .
Try satisfying path inequalities by using multicommodity flow
and Lemma 2 (either we can find a nice flow which gives
substantial feedback or a cut with desired expansion, i.e, a
near-optimal integral solution).

Undirected BALANCED SEPARATOR : Oracle

ORACLE Description : Notations

I fp is the flow on a path p.
I fe is the flow on edge e; fe :=

∑
p3e fp.

I fi is the total flow through a node; fi =
∑

p∈Pi
where Pi is the

set of paths starting from i .
I fij is total flow between nodes i , j ; fij =

∑
p∈Pij

fp where Pij is
the set of paths from i to j .

I A valid d-regular flow satisfies the following constraints:
I ∀e : fe ≤ ce
I ∀i : fi ≤ d

Undirected BALANCED SEPARATOR : Oracle

ORACLE Description

I Apply Lemma 2 to set S .
I If a cut of desired expansion is found, stop.
I If a valid d-regular flow is obtained which satisfies∑

ij fij‖vi − vj‖2 ≥ α, where d = O(log(n)α
n).

I F := Laplacian of the weighed graph with edge weights fe .
I Capacity constraints fe ≤ ce imply that F � C
I D := Laplacian of the complete graph where only edges {i , j}

with i ∈ S and j ∈ T have weight fij and rest have 0 weight.
I D • X =

∑
ij fij‖vi − vj‖2 ≥ 2α (Using Lemma 2).

Undirected BALANCED SEPARATOR : Oracle

ORACLE Description

I Apply Lemma 2 to set S .

I If a cut of desired expansion is found, stop.
I If a valid d-regular flow is obtained which satisfies∑

ij fij‖vi − vj‖2 ≥ α, where d = O(log(n)α
n).

I F := Laplacian of the weighed graph with edge weights fe .
I Capacity constraints fe ≤ ce imply that F � C
I D := Laplacian of the complete graph where only edges {i , j}

with i ∈ S and j ∈ T have weight fij and rest have 0 weight.
I D • X =

∑
ij fij‖vi − vj‖2 ≥ 2α (Using Lemma 2).

Undirected BALANCED SEPARATOR : Oracle

ORACLE Description

I Apply Lemma 2 to set S .
I If a cut of desired expansion is found, stop.

I If a valid d-regular flow is obtained which satisfies∑
ij fij‖vi − vj‖2 ≥ α, where d = O(log(n)α

n).

I F := Laplacian of the weighed graph with edge weights fe .
I Capacity constraints fe ≤ ce imply that F � C
I D := Laplacian of the complete graph where only edges {i , j}

with i ∈ S and j ∈ T have weight fij and rest have 0 weight.
I D • X =

∑
ij fij‖vi − vj‖2 ≥ 2α (Using Lemma 2).

Undirected BALANCED SEPARATOR : Oracle

ORACLE Description

I Apply Lemma 2 to set S .
I If a cut of desired expansion is found, stop.
I If a valid d-regular flow is obtained which satisfies∑

ij fij‖vi − vj‖2 ≥ α, where d = O(log(n)α
n).

I F := Laplacian of the weighed graph with edge weights fe .
I Capacity constraints fe ≤ ce imply that F � C
I D := Laplacian of the complete graph where only edges {i , j}

with i ∈ S and j ∈ T have weight fij and rest have 0 weight.
I D • X =

∑
ij fij‖vi − vj‖2 ≥ 2α (Using Lemma 2).

Undirected BALANCED SEPARATOR : Oracle

ORACLE Description

I Apply Lemma 2 to set S .
I If a cut of desired expansion is found, stop.
I If a valid d-regular flow is obtained which satisfies∑

ij fij‖vi − vj‖2 ≥ α, where d = O(log(n)α
n).

I F := Laplacian of the weighed graph with edge weights fe .

I Capacity constraints fe ≤ ce imply that F � C
I D := Laplacian of the complete graph where only edges {i , j}

with i ∈ S and j ∈ T have weight fij and rest have 0 weight.
I D • X =

∑
ij fij‖vi − vj‖2 ≥ 2α (Using Lemma 2).

Undirected BALANCED SEPARATOR : Oracle

ORACLE Description

I Apply Lemma 2 to set S .
I If a cut of desired expansion is found, stop.
I If a valid d-regular flow is obtained which satisfies∑

ij fij‖vi − vj‖2 ≥ α, where d = O(log(n)α
n).

I F := Laplacian of the weighed graph with edge weights fe .
I Capacity constraints fe ≤ ce imply that F � C

I D := Laplacian of the complete graph where only edges {i , j}
with i ∈ S and j ∈ T have weight fij and rest have 0 weight.

I D • X =
∑

ij fij‖vi − vj‖2 ≥ 2α (Using Lemma 2).

Undirected BALANCED SEPARATOR : Oracle

ORACLE Description

I Apply Lemma 2 to set S .
I If a cut of desired expansion is found, stop.
I If a valid d-regular flow is obtained which satisfies∑

ij fij‖vi − vj‖2 ≥ α, where d = O(log(n)α
n).

I F := Laplacian of the weighed graph with edge weights fe .
I Capacity constraints fe ≤ ce imply that F � C
I D := Laplacian of the complete graph where only edges {i , j}

with i ∈ S and j ∈ T have weight fij and rest have 0 weight.

I D • X =
∑

ij fij‖vi − vj‖2 ≥ 2α (Using Lemma 2).

Undirected BALANCED SEPARATOR : Oracle

ORACLE Description

I Apply Lemma 2 to set S .
I If a cut of desired expansion is found, stop.
I If a valid d-regular flow is obtained which satisfies∑

ij fij‖vi − vj‖2 ≥ α, where d = O(log(n)α
n).

I F := Laplacian of the weighed graph with edge weights fe .
I Capacity constraints fe ≤ ce imply that F � C
I D := Laplacian of the complete graph where only edges {i , j}

with i ∈ S and j ∈ T have weight fij and rest have 0 weight.
I D • X =

∑
ij fij‖vi − vj‖2 ≥ 2α (Using Lemma 2).

Undirected BALANCED SEPARATOR : Oracle

ORACLE Description

I Set all xi = α
n , and all zS = 0.

I
∑

p fpTp = F−D
I Thus the feedback matrix becomes

diag(x) + F−D− F = diag(x)−D

Then (αn I−D) • X ≤ α− α = 0.
Also, since the flow is d-regular, 0 � D � 2d I. Hence,
−2d I � α

n I−D � α
n I

Undirected BALANCED SEPARATOR : Oracle

ORACLE Description

I Set all xi = α
n , and all zS = 0.

I
∑

p fpTp = F−D
I Thus the feedback matrix becomes

diag(x) + F−D− F = diag(x)−D

Then (αn I−D) • X ≤ α− α = 0.
Also, since the flow is d-regular, 0 � D � 2d I. Hence,
−2d I � α

n I−D � α
n I

Undirected BALANCED SEPARATOR : Oracle

ORACLE Description

I Set all xi = α
n , and all zS = 0.

I
∑

p fpTp = F−D

I Thus the feedback matrix becomes

diag(x) + F−D− F = diag(x)−D

Then (αn I−D) • X ≤ α− α = 0.
Also, since the flow is d-regular, 0 � D � 2d I. Hence,
−2d I � α

n I−D � α
n I

Undirected BALANCED SEPARATOR : Oracle

ORACLE Description

I Set all xi = α
n , and all zS = 0.

I
∑

p fpTp = F−D
I Thus the feedback matrix becomes

diag(x) + F−D− F = diag(x)−D

Then (αn I−D) • X ≤ α− α = 0.
Also, since the flow is d-regular, 0 � D � 2d I. Hence,
−2d I � α

n I−D � α
n I

Undirected BALANCED SEPARATOR : Time Complexity Analysis

I Assume that graph is preprocessed using algorithm of Benczúr
and Karger

I ρ = O(log(n)α
n) and R = n. Thus the number of iterations

from Theorem 1 is O(log3(n)).
I Each iteration involves at most one max-flow computation

which can be done by Goldberg and Rao’s algorithm in
Õ(n1.5) time since there are O(n) edges.

I We also compute, in each iteration, an approximation of
Cholesky decomposition of the matrix exponential by
projecting on a random O(log n) dimensional subspace. Since
there are only O(log3(n)) iterations and each iteration adds at
most Õ(n1.5) demand pairs in the max-flow computation, the
matrix exponential has only Õ(n1.5) non-zero entries and can
be computed in Õ(n1.5) time.

I Thus running time is Õ(m + n1.5)

Outline

Primal-Dual Schema
Primal-Dual Schema for LP
Extension to SDP
Application to MAXCUT

Problems
Undirected BALANCED SEPARATOR
Undirected SPARSEST CUT

References

Appendix

Undirected SPARSEST CUT

Undirected Sparsest Cut Problem
Given a graph G (V ,E) with |V | = n, |E | = m, and capacity ce on
edge e ∈ E , find the cut (S , S) with minimum expansion,

E(S,S)

min{|S |,|S|}

Undirected SPARSEST CUT

Undirected Sparsest Cut Problem
Given a graph G (V ,E) with |V | = n, |E | = m, and capacity ce on
edge e ∈ E , find the cut (S , S) with minimum expansion,

E(S,S)

min{|S |,|S|}

Theorem
An O(log n) pseudo-approximation to the SPARSEST CUT can be
computed in Õ(m + n1.5) time using O(log2(n)) single commodity flow
computations.

Undirected SPARSEST CUT

SDP

min
∑

e={i ,j}∈E

ce‖vi − vj‖2

∀p :
k−1∑
j=1

‖vij − vij+1‖
2 ≥ ‖vi1 − vik‖

2

‖
∑
i

vi‖2 = 0∑
i

‖vi‖2 = n

minC • X
∀p : Tp • X ≥ 0

J • X = 0
Tr(X) = n

X � 0

J is the all ones matrix.

Undirected SPARSEST CUT

SDP

minC • X
∀p : Tp • X ≥ 0

J • X = 0
Tr(X) = n

X � 0

J is the all ones matrix.

Dual Program

max nx

xI +
∑
p

fpTp + zJ � C

∀p : fp ≥ 0

Undirected SPARSEST CUT : Oracle

Lemma 3
Given for all i ∈ V , vectors vi , such that for some constant δ1,
n2 ≥

∑
ij ‖vi − vj‖2 ≥ (1− δ1)n2, and a quantity α. Then there is

an algorithm, which, using a single max-flow computation, outputs
either,

1. a valid O(αn)-regular flow fp, such that
∑

ij fij‖vi − vj‖2 ≥ α,
or,

2. a cut of expansion O(αn), or,
3. a set of nodes S ⊆ V of size Ω(n), such that for all i ∈ S ,
‖vi‖2 = O(1),

∑
i ,j∈S ‖vi − vj‖2 ≥ Ω(n2)

Undirected SPARSEST CUT : Oracle

Lemma 3
Given for all i ∈ V , vectors vi , such that for some constant δ1,
n2 ≥

∑
ij ‖vi − vj‖2 ≥ (1− δ1)n2, and a quantity α. Then there is

an algorithm, which, using a single max-flow computation, outputs
either,
1. a valid O(αn)-regular flow fp, such that

∑
ij fij‖vi − vj‖2 ≥ α,

or,

2. a cut of expansion O(αn), or,
3. a set of nodes S ⊆ V of size Ω(n), such that for all i ∈ S ,
‖vi‖2 = O(1),

∑
i ,j∈S ‖vi − vj‖2 ≥ Ω(n2)

Undirected SPARSEST CUT : Oracle

Lemma 3
Given for all i ∈ V , vectors vi , such that for some constant δ1,
n2 ≥

∑
ij ‖vi − vj‖2 ≥ (1− δ1)n2, and a quantity α. Then there is

an algorithm, which, using a single max-flow computation, outputs
either,
1. a valid O(αn)-regular flow fp, such that

∑
ij fij‖vi − vj‖2 ≥ α,

or,
2. a cut of expansion O(αn), or,

3. a set of nodes S ⊆ V of size Ω(n), such that for all i ∈ S ,
‖vi‖2 = O(1),

∑
i ,j∈S ‖vi − vj‖2 ≥ Ω(n2)

Undirected SPARSEST CUT : Oracle

Lemma 3
Given for all i ∈ V , vectors vi , such that for some constant δ1,
n2 ≥

∑
ij ‖vi − vj‖2 ≥ (1− δ1)n2, and a quantity α. Then there is

an algorithm, which, using a single max-flow computation, outputs
either,
1. a valid O(αn)-regular flow fp, such that

∑
ij fij‖vi − vj‖2 ≥ α,

or,
2. a cut of expansion O(αn), or,
3. a set of nodes S ⊆ V of size Ω(n), such that for all i ∈ S ,
‖vi‖2 = O(1),

∑
i ,j∈S ‖vi − vj‖2 ≥ Ω(n2)

Undirected SPARSEST CUT : Oracle

ORACLE Description
Given a candidate solution X, the oracle always sets x = α

n . Since
x I • X = α, it now needs to find fp, z and F � C such that

α +
∑
p

fp(Tp • X) + z(J • X)− (F • X) ≤ 0

It runs the following steps:

1. If J • X ≥ δ1n2, for some small constant δ1, then set
z = − α

δ1n2 , so that z(J • X) ≤ −α. Also, ‖αn I− zJ‖ ≤ O(αn)

2. Assume J • X ≤ δ1n2 and v1, v2, . . . , vn be the vectors
obtained from the Cholesky decomposition of X.
J •X =⇒ n2 ≥

∑
ij ‖vi − vj‖2 ≥ (1− δ1)n2. Apply lemma 3.

Undirected SPARSEST CUT : Oracle

ORACLE Description
Given a candidate solution X, the oracle always sets x = α

n . Since
x I • X = α, it now needs to find fp, z and F � C such that

α +
∑
p

fp(Tp • X) + z(J • X)− (F • X) ≤ 0

It runs the following steps:
1. If J • X ≥ δ1n2, for some small constant δ1, then set

z = − α
δ1n2 , so that z(J • X) ≤ −α. Also, ‖αn I− zJ‖ ≤ O(αn)

2. Assume J • X ≤ δ1n2 and v1, v2, . . . , vn be the vectors
obtained from the Cholesky decomposition of X.
J •X =⇒ n2 ≥

∑
ij ‖vi − vj‖2 ≥ (1− δ1)n2. Apply lemma 3.

Undirected SPARSEST CUT : Oracle

ORACLE Description
Given a candidate solution X, the oracle always sets x = α

n . Since
x I • X = α, it now needs to find fp, z and F � C such that

α +
∑
p

fp(Tp • X) + z(J • X)− (F • X) ≤ 0

It runs the following steps:
1. If J • X ≥ δ1n2, for some small constant δ1, then set

z = − α
δ1n2 , so that z(J • X) ≤ −α. Also, ‖αn I− zJ‖ ≤ O(αn)

2. Assume J • X ≤ δ1n2 and v1, v2, . . . , vn be the vectors
obtained from the Cholesky decomposition of X.
J •X =⇒ n2 ≥

∑
ij ‖vi − vj‖2 ≥ (1− δ1)n2. Apply lemma 3.

Undirected SPARSEST CUT : Oracle

ORACLE Description

I If from the previous step, a cut of expansion O(αn) is obtained,
output it.

I If we get a flow fp such that
∑

ij fij‖vi − vj‖2 ≥ α, define F
and D to be the flow and demand graph Laplacians
respectively and proceed as in step 3 of undirected BALANCED
SEPARATOR.

I Finally if a set of nodes S ⊆ V of size Ω(n) is obtained, such
that for all i ∈ S , ‖vi‖2 = O(1) and∑

i ,j∈S ‖vi − vj‖2 ≥ Ω(n2), apply lemma 1 to S .

I If a cut of small expansion is obtained, stop.
I Else if a d-regular flow such that

∑
ij fij‖vi − vj‖2 ≥ α is

obtained, proceed as before.

Undirected SPARSEST CUT : Oracle

ORACLE Description

I If from the previous step, a cut of expansion O(αn) is obtained,
output it.

I If we get a flow fp such that
∑

ij fij‖vi − vj‖2 ≥ α, define F
and D to be the flow and demand graph Laplacians
respectively and proceed as in step 3 of undirected BALANCED
SEPARATOR.

I Finally if a set of nodes S ⊆ V of size Ω(n) is obtained, such
that for all i ∈ S , ‖vi‖2 = O(1) and∑

i ,j∈S ‖vi − vj‖2 ≥ Ω(n2), apply lemma 1 to S .

I If a cut of small expansion is obtained, stop.
I Else if a d-regular flow such that

∑
ij fij‖vi − vj‖2 ≥ α is

obtained, proceed as before.

Undirected SPARSEST CUT : Oracle

ORACLE Description

I If from the previous step, a cut of expansion O(αn) is obtained,
output it.

I If we get a flow fp such that
∑

ij fij‖vi − vj‖2 ≥ α, define F
and D to be the flow and demand graph Laplacians
respectively and proceed as in step 3 of undirected BALANCED
SEPARATOR.

I Finally if a set of nodes S ⊆ V of size Ω(n) is obtained, such
that for all i ∈ S , ‖vi‖2 = O(1) and∑

i ,j∈S ‖vi − vj‖2 ≥ Ω(n2), apply lemma 1 to S .

I If a cut of small expansion is obtained, stop.
I Else if a d-regular flow such that

∑
ij fij‖vi − vj‖2 ≥ α is

obtained, proceed as before.

Undirected SPARSEST CUT : Oracle

ORACLE Description

I If from the previous step, a cut of expansion O(αn) is obtained,
output it.

I If we get a flow fp such that
∑

ij fij‖vi − vj‖2 ≥ α, define F
and D to be the flow and demand graph Laplacians
respectively and proceed as in step 3 of undirected BALANCED
SEPARATOR.

I Finally if a set of nodes S ⊆ V of size Ω(n) is obtained, such
that for all i ∈ S , ‖vi‖2 = O(1) and∑

i ,j∈S ‖vi − vj‖2 ≥ Ω(n2), apply lemma 1 to S .

I If a cut of small expansion is obtained, stop.
I Else if a d-regular flow such that

∑
ij fij‖vi − vj‖2 ≥ α is

obtained, proceed as before.

Undirected SPARSEST CUT : Oracle

ORACLE Description

I If from the previous step, a cut of expansion O(αn) is obtained,
output it.

I If we get a flow fp such that
∑

ij fij‖vi − vj‖2 ≥ α, define F
and D to be the flow and demand graph Laplacians
respectively and proceed as in step 3 of undirected BALANCED
SEPARATOR.

I Finally if a set of nodes S ⊆ V of size Ω(n) is obtained, such
that for all i ∈ S , ‖vi‖2 = O(1) and∑

i ,j∈S ‖vi − vj‖2 ≥ Ω(n2), apply lemma 1 to S .
I If a cut of small expansion is obtained, stop.

I Else if a d-regular flow such that
∑

ij fij‖vi − vj‖2 ≥ α is
obtained, proceed as before.

Undirected SPARSEST CUT : Oracle

ORACLE Description

I If from the previous step, a cut of expansion O(αn) is obtained,
output it.

I If we get a flow fp such that
∑

ij fij‖vi − vj‖2 ≥ α, define F
and D to be the flow and demand graph Laplacians
respectively and proceed as in step 3 of undirected BALANCED
SEPARATOR.

I Finally if a set of nodes S ⊆ V of size Ω(n) is obtained, such
that for all i ∈ S , ‖vi‖2 = O(1) and∑

i ,j∈S ‖vi − vj‖2 ≥ Ω(n2), apply lemma 1 to S .
I If a cut of small expansion is obtained, stop.
I Else if a d-regular flow such that

∑
ij fij‖vi − vj‖2 ≥ α is

obtained, proceed as before.

Outline

Primal-Dual Schema
Primal-Dual Schema for LP
Extension to SDP
Application to MAXCUT

Problems
Undirected BALANCED SEPARATOR
Undirected SPARSEST CUT

References

Appendix

References

1. Arora, Sanjeev, and Satyen Kale. “A combinatorial,
primal-dual approach to semidefinite programs.” Proceedings
of the thirty-ninth annual ACM symposium on Theory of
computing. ACM, 2007.

2. Vazirani, Vijay V. Approximation algorithms. springer, 2001.
3. Arora, Sanjeev, Elad Hazan, and Satyen Kale. “The

Multiplicative Weights Update Method: a Meta-Algorithm and
Applications.” Theory of Computing 8.1 (2012): 121-164.

4. Arora, Sanjeev, Elad Hazan, and Satyen Kale. “Fast algorithms
for approximate semidefinite programming using the
multiplicative weights update method.” Foundations of
Computer Science, 2005. FOCS 2005. 46th Annual IEEE
Symposium on. IEEE, 2005.

Questions???

Outline

Primal-Dual Schema
Primal-Dual Schema for LP
Extension to SDP
Application to MAXCUT

Problems
Undirected BALANCED SEPARATOR
Undirected SPARSEST CUT

References

Appendix

Undirected BALANCED SEPARATOR : Oracle

Lemma 1
For at least a a

32 fraction of directions u, there are efficiently
computable sets S and T , each of size at least a

128n , such that for
any i ∈ S and j ∈ T , ((v)j − vi) · u ≥ a

48
√
n

Undirected BALANCED SEPARATOR : Oracle

Lemma 1: Proof
I Since

∑
ij ‖vi − vj‖2 ≥ an2 and ‖vi − vj‖ ≤ 2,∑

ij ‖vi − vj‖ ≥ a
2n

2.
I Thus for any node i ,

a

2
n2 ≤

∑
jk

‖vj − vk‖ ≤
∑
jk

‖vj − vi‖+ ‖vi − vk‖ ≤ n
∑
j

‖vi − vj‖

So, ∑
j

‖vi − vj‖ ≥
a

2
n

Undirected BALANCED SEPARATOR : Oracle

Lemma 1: Proof
I Since the maximum value of ‖vi − vj‖ is 2, there must be at

least a
8n nodes i such that ‖vi − vj‖ ≥ a

4 .
I Define a stretched pair as a pair of nodes i , j , such that
|vi · u− vj · u| ≥ a

24
√
n . The Gaussian nature of projections

guarantees that this occurs with probability 1
2 . Thus,

E [#stretched pairs] ≥ 1
2
· 1
2
· a
8
n · n =

a

32
n2

I Since there are atmost 1
2n

2 pairs, for at least a
32 fraction of

directions u, we have a
64n

2 stretched pairs.

Undirected BALANCED SEPARATOR : Oracle

Lemma 1: Proof
I Let u be such a direction. Define δ = a

48
√
n and m to be the

median value of vi · u
I Define sets L = {i : vi · u ≤ m − δ},

M− = {i : vi · u ∈ [m − δ,m]},
M+ = {i : vi · u ∈ [m,m + δ]}, R = {i : vi · u ≥ m + δ}.
Thus, any stretched pair has at least one node in L ∪ R .

I At least one of L or R has size at least a
128n, as otherwise the

number of stretched pairs is less than 2 · a
128n · n = a

64n
(contradiction).

I If |L| ≥ a
128n, set S = L, T = M+ ∪ R .

I |T | ≥ n
2 as T is the set of all points with projection higher

than median.

Undirected BALANCED SEPARATOR : Oracle

Lemma 2
Let S ⊆ V be a set of nodes of size Ω(n). Suppose for all i ∈ S ,
vectors vi of length O(1) are given such that∑

i ,j∈S ‖vi − vj‖2 ≥ Ω(n2), and a quantity α. Then there is an
algorithm, which, using a single max-flow computation, either
outputs a valid O(log(n)α

n)-regular flow fp such that∑
ij fij‖vi − vj‖2 ≥ α, or a c ′-balanced cut of expansion

O(log(n)αn).

Undirected BALANCED SEPARATOR : Oracle

Lemma 2 : Proof
I What we seek: A d-regular flow fp for d := β log(n)·α

n where β
is a sufficiently large constant.

I Choose a direction represented by a unit vector u at random.
I Since KS • X ≥ Ωn2, thus

∑
i ,j∈S ‖vi − vj‖2 ≥ Ωn2

I Using Lemma 1, we can find sets S and T of size cn each, for
some constant c > 0, such that for all i ∈ S and j ∈ T , we
have (vj − vi) · u ≥ σ√

n for some constant σ > 0
I Using Gaussian nature of projections, with very high

probability, for any pair of nodes i , j we have
|(vj − vi) · u| ≤ O(

√
log(n)) · ‖vi−vj‖√

n

Undirected BALANCED SEPARATOR : Oracle

Lemma 2 : Proof
I Thus with constant probability, we get sets S and T such that

for all nodes i ∈ S and j ∈ T , we have ‖vi − vj‖2 ≥ γ
log(n) for

some constant γ > 0
I If this is the case, connect all nodes in S to a single source and

all nodes in T to a single sink with edges of capacity d each.
Let fp be the max flow in this network. Suppose the total flow
obtained is at least cβ

2 log(n) · α. Assume that all flow
originates from a node i ∈ S and ends at some node j ∈ T .
Then, ∑

i∈S ,j∈T
fij‖vi − vj‖2 ≥

cβ

2
log(n) · α× γ

log(n)
= 2α

if β = 4
cγ

Undirected BALANCED SEPARATOR : Oracle

Lemma 2 : Proof
I If the total flow obtained is less than cβ

2 log(n) · α, by
max-flow-min-cut theorem, the cut obtained is also at most
this size. This is c/2-balanced, since atmost
cβ
2 log(n) · α/d = cn/2 source (and sink) edges can be cut.
Thus cut expansion is O(log(n) · αn)

Undirected SPARSEST CUT : Oracle

Lemma 3
Given for all i ∈ V , vectors vi , such that for some constant δ1,
n2 ≥

∑
ij ‖vi − vj‖2 ≥ (1− δ1)n2, and a quantity α. Then there is

an algorithm, which, using a single max-flow computation, outputs
either,

1. a valid O(αn)-regular flow fp, such that
∑

ij fij‖vi − vj‖2 ≥ α,
or,

2. a cut of expansion O(αn), or,
3. a set of nodes S ⊆ V of size Ω(n), such that for all i ∈ S ,
‖vi‖2 = O(1),

∑
i ,j∈S ‖vi − vj‖2 ≥ Ω(n2)

Undirected SPARSEST CUT : Oracle

Lemma 3
Given for all i ∈ V , vectors vi , such that for some constant δ1,
n2 ≥

∑
ij ‖vi − vj‖2 ≥ (1− δ1)n2, and a quantity α. Then there is

an algorithm, which, using a single max-flow computation, outputs
either,
1. a valid O(αn)-regular flow fp, such that

∑
ij fij‖vi − vj‖2 ≥ α,

or,

2. a cut of expansion O(αn), or,
3. a set of nodes S ⊆ V of size Ω(n), such that for all i ∈ S ,
‖vi‖2 = O(1),

∑
i ,j∈S ‖vi − vj‖2 ≥ Ω(n2)

Undirected SPARSEST CUT : Oracle

Lemma 3
Given for all i ∈ V , vectors vi , such that for some constant δ1,
n2 ≥

∑
ij ‖vi − vj‖2 ≥ (1− δ1)n2, and a quantity α. Then there is

an algorithm, which, using a single max-flow computation, outputs
either,
1. a valid O(αn)-regular flow fp, such that

∑
ij fij‖vi − vj‖2 ≥ α,

or,
2. a cut of expansion O(αn), or,

3. a set of nodes S ⊆ V of size Ω(n), such that for all i ∈ S ,
‖vi‖2 = O(1),

∑
i ,j∈S ‖vi − vj‖2 ≥ Ω(n2)

Undirected SPARSEST CUT : Oracle

Lemma 3
Given for all i ∈ V , vectors vi , such that for some constant δ1,
n2 ≥

∑
ij ‖vi − vj‖2 ≥ (1− δ1)n2, and a quantity α. Then there is

an algorithm, which, using a single max-flow computation, outputs
either,
1. a valid O(αn)-regular flow fp, such that

∑
ij fij‖vi − vj‖2 ≥ α,

or,
2. a cut of expansion O(αn), or,
3. a set of nodes S ⊆ V of size Ω(n), such that for all i ∈ S ,
‖vi‖2 = O(1),

∑
i ,j∈S ‖vi − vj‖2 ≥ Ω(n2)

Undirected SPARSEST CUT : Oracle

Lemma 3 : Proof
Given vectors vi such that n2 ≥

∑
ij ‖vi − vj‖2 ≥ (1− δ1)n2, run

the following steps,
1. For a node i and radius r , let B(i , r) = {j : ‖vi − vj‖ ≤ r}. If

there is a node i such that for some constant δ2,
|B(i , δ2)| ≥ n/4, then any i0 ∈ B(i , δ2) satisfies
|B(i0, 2δ2)| ≥ n/4. Find such i0 by random sampling. Define
L = B(i0, 2δ2), and R = V \L. For j ∈ R , define
d(j , L) = mini∈L ‖vi − vj‖2. Then, since∑

ij ‖vi − vj‖2 ≥ (1− δ1)n2,
∑

j∈R d(j , L) ≥ n
10 for suitable

choice of δ1, δ2. Define k := |R|
|L| . k = O(1)

Undirected SPARSEST CUT : Oracle

Lemma 3 : Proof
Given vectors vi such that n2 ≥

∑
ij ‖vi − vj‖2 ≥ (1− δ1)n2, run

the following steps,
1. . . .

Connect all nodes in L to a single source with edges of
capacity 10kα

n and all nodes in R to a single sink with edges of
capacity 10α

n and compute the max-flow. If the flow saturates
all source and sink nodes, then∑

i∈L,j∈R
fij‖vi − vj‖2 ≥

∑
j∈R

10α
n
· d(j , L) ≥ α

Undirected SPARSEST CUT : Oracle

Lemma 3 : Proof
Given vectors vi such that n2 ≥

∑
ij ‖vi − vj‖2 ≥ (1− δ1)n2, run

the following steps,
2. If the flow doesn’t saturate all source and sink edges, then let

the number of nodes in L in the resulting cut connected to
source be ns and the number of nodes in R connected to the
sink be nt . Then the capacity of the graph edges cut is at
most 10α

n (|R| − kns − nt), and the smaller side of the cut has
at least min{|L| − ns , |R| − nt} nodes. Thus, expansion of cut
is at most 10kα

n = O(αn).

Undirected SPARSEST CUT : Oracle

Lemma 3 : Proof
Given vectors vi such that n2 ≥

∑
ij ‖vi − vj‖2 ≥ (1− δ1)n2, run

the following steps,
3. For all nodes i , let |B(i , δ2)| < n/4. Then it can be easily

checked that there is a node i such that |B(i ,
√
2)| ≥ (1−δ1)

2 n.
Find i0, by random sampling, such that |B(i , 2

√
2)| ≥ (1−δ1)

2 n.
Let S = B(i , 2

√
2). Since for every i ∈ S , |B(i , δ2)| < n/4,∑

i ,j∈S ‖vi − vj‖2 ≥ Ω(n2). Output S .

Matrix Exponentiation

Complexity of computing exponential of a matrix

I No fast algorithm known. Still an area of active research.
I Special cases:

1. Exponential of a diagonal matrix: A diagonal matrix whose
diaogonal elements are exponential of diagonal elements of
original matrix.

2. Projection Matrix (P2 = P):
exp(P) = I + P(1 + 1

2! + · · ·) = I + (e − 1)P
3. Nilpotent Matrix (Pq = 0): exp(P) = I + P + P2

2! + · · ·+ Pq−1

(q−1)!

I Other techniques include using Laurent Series, Sylvester’s
Formula, etc.

I If Y is invertible, then eYXY−1
= YeXY−1. This gives a O(n3)

algorithm for matrix exponentiation.

Matrix Exponentiation

I Idea: only approximate computation suffices.

I ORACLE finds y such that
m∑
j=1

(Aj • X(t))yj − (C • X(t)) ≥ 0.

I Let v1, v2, . . . , vn be vectors obtained from Cholesky
decomposition of X(t) such that
X(t)
ij = vi · vj = 1

2 [‖vi‖2 + ‖vj‖2 − ‖vi − vj‖2 ≥ 0.
I ORACLE needs to find appropiate variables si and tij such that

Σi si‖vi‖2 + Σij tij‖vi − vj‖2 ≥ 0.
I Vectors vi obtained from Cholesky decomposition of

X(t) = exp(M) are simply the row vectors of exp(1
2M).

I Since we are only interested in norms, we can try
Johnson-Lindenstrauss dimension reduction.

Matrix Exponentiation

Johnson-Lindenstrauss Lemma
Given 0 < ε < 1, a set X of m points in Rn and a number
n > 8 ln n/ε2, there is a linear map RN → Rn such that

(1− ε)‖u− v‖2 ≤ ‖f (u)− f (v)‖2 ≤ (1 + ε)‖u− v‖2

for all u, v ∈ X.

I vi are the vectors obtained from Cholesky Decomposition of
X(t).

I Project the vectors vi on a random d = O(log n
δ2

) dimensional
subspace, and scale the projections by

√
n
d to get vectors v′.

I With high probability, ‖v′i‖2 and ‖v′i − v′j‖2 are within (1± δ)

of ‖vi‖2 and ‖vi − vj‖2.
I Run ORACLE for X′ in a way that its feedback is also valid for

X(t).

	Primal-Dual Schema
	Primal-Dual Schema for LP
	Extension to SDP
	Application to MAXCUT

	Problems
	Undirected BALANCED SEPARATOR
	Undirected SPARSEST CUT

	References
	Appendix

