
CS771: Group 1
Online Recommender System

Akshay Kumar Arpit Jain Dhananjay Sharma
kakshay@iitk.ac.in arpitj@iitk.ac.in djsharma@iitk.ac.in

Dept. of CSE Dept. of CSE Dept. of CSE
Indian Institute of Technology, Kanpur

Project Report
November 12, 2013

Abstract
Online Recommender System are ubiquitous in present
world. It is used by a wide array of companies like Net-
flix, Amazon, etc. to suggest products to their users. In
this project, we have tried to build a recommender system
which predicts the rating which can be given by a user. We
started off with implementing already existing algorithms
and then improvised it a bit and analyzed the accracies
offered by each of the algorithm.

Description of Problem Statement
As already stated, the main problem is to predict the rat-
ing given by a user to a movie. The MovieLens database
consists of 100000 ratings given by different users. A total
of 1682 movies have been rated by 943 users. Each user
has rated at least 20 movies. Additionally, we are also
provided with different attributes of movies and users.
Specifically speaking, for a movie, we are provided with
its title, different genres a movie falls, its release date,
video release data and IMDB URL. For a user, we are
provided with his/her demographics information such as
their age, gender, occupation and zip code. Finally each
user has rates some movies (atleast 20) and we are pro-
vided the rating and the timestamp.

Approach
The most naive approach is to pose it as a classification
problem. Classification can be in any of the classes from
1 to 5 if a movie has been rated by the user. If we have a
.arff file with different feature vector for each rating, then

this problem can be posed as a classification problem. For
any rating, their exists a corresponding movie and user.
So what we did was to replace movie and users by their
respective attribute and classify. The whole data was split
into 80% training data and 20% test data. The results are
discussed in the subsequent section.

Existing Algorithm
There are primarily two approaches followed in movie
recommender systems:

1. Collaborative Filtering

2. Content Based Filtering

Content Based Filtering predicts movie rating by a user
based on his previous ratings. It actually doesn’t lay any
accord on the connections between a user. Hence, it is
efficient to predict ratings for a new user. Hence, compa-
nies adopting Content Based Ratings generally ask to new
users to fill a form to know their tastes. On the the other
hand, Collaborative Filtering predicts a rating based on
the simillarity between two users. Similar users are goins
to rate movies similarly.

Mathematics of the two algorithm
The algorithms implemented by us are the ones described
by Andrew Ng in Machine Learning course on Coursera.

Coming to the notations used,

u : Set of users |u| = nu

1

m : Set of movies |m| = nm

r(i, j) =

{
1 if user j has rated movie i
0 otherwise

y(i, j) = rating if r(i,j) = 1

Consider the following example,

Movie Alice(1) Bob(2) Carol(3) Dave(4)
Love at last 5 5 0 0
Romance for-
ever

5 ? ? 0

Cute puppies
of love

? 4 0 ?

Nonstop car
chases

0 0 5 4

Swords vs.
karate

0 0 5 ?

Suppose the genre of each movie is also given (a
valid assumption as it’s already been provided in the
movielens database). Let it be as follows:

Movie x1(romance) x2(action)
Love at last 0.9 0

Romance forever 1.0 0.01
Cute puppies of love 0.99 0
Nonstop car chases 0.1 1.0
Swords vs. karate 0 0.9

We also define the following parameters denoting the at-
tributes of users and movies. Corresponding to each user
j, we define a parameter θ(j). Similarly, define a parame-
ter x(i) for each movie i.

θ(j) = parameter vector for user j

x(i) = parameter vector for movie i

For user j, movie i, predicted rating would then be
(θ(j))Tx(i).

The error function for any predicted rating is(
(θ(j))T (x(i)) − y(i,j)

)2
. Hence the objective fun-

cion to be minimized is:

min
θ(j)

1

2m(j)

∑
i:r(i,j)=1

(
(θ(j))T (x(i))− y(i,j)

)2

+
λ

2m(j)

n∑
k=1

(
θ
(j)
k

)2

The last term is the penalty term for high value co-
efficients. Half is added for simplicity. To learn
θ(1), θ(2), · · · , θ(nu):

min
θ(1),θ(2),··· ,θ(nu)

1

2

nu∑
j=1

∑
i:r(i,j)=1

(
(θ(j))T (x(i))− y(i,j)

)2

+
λ

2

nu∑
j=1

n∑
k=1

(
θ
(j)
k

)2
This can be done by using Gradient Descent Algorithm:

θ
(j)
k := θ

(j)
k −α

∑
i:r(i,j)=1

(
(θ(j))T (x(i))−y(i,j)

)
x
(i)
k (k = 0)

θ
(j)
k := θ

(j)
k −α

∑
i:r(i,j)=1

(
(θ(j))T (x(i))−y(i,j)

)
x
(i)
k +λθ

(j)
k

(k 6= 0)

α is the learning rate. The results are discussed in the
results section.

Suppose instead of genre of different movies, we
are provided with tastes of different users.

θ(1) =

05
0

 ; θ(2) =

05
0

 ; θ(3) =

00
5

 ; θ(4) =

00
5

 ;

Here, given θ(1), θ(2), · · · , θ(nu), we need to learn x(i):

min
x(i)

∑
j:r(i,j)=1

(
(θ(j))T (x(i))−y(i,j)

)2
+

λ

2m(j)

n∑
k=1

(
x
(j)
k

)2
Summing it overall all x(1), x(2), · · · , x(nm), the objective
function becomes:

min
x(1),x(2),··· ,x(nm)

1

2

nm∑
i=1

∑
j:r(i,j)=1

(
(θ(j))T (x(i))− y(i,j)

)2

+
λ

2

nm∑
i=1

n∑
k=1

(
x
(i)
k

)2
We tested Content Based Filtering on movielens
database the results of which are discussed in the results
section. Since users have very few attributes known a
proiri, the second objective function was not minimized

2

Low Rank Matrix Factorization
The discussion is continued from the previous section.

Note that we now have two different problems. Their
overall structure is as follows:

1. Given x(1), x(2), · · · , x(nm), predict
θ(1), θ(2), · · · , θ(nu)

2. Given θ(1), θ(2), · · · , θ(nu), predict
x(1), x(2), · · · , x(nm)

So, one plausible approach can be to find both θ’s and x’s
simultaneously. Start off with some random θ and update
x to miniimze the error. Based on this x, update θ to min-
imize error and keep doing so.

θ → x→ θ → x→ θ → x→ θ → x→ θ → x · · ·

Another approach is to change the objective function to
find both θ’s and x’s. The updated objective function is:

J(x(1), x(2), · · · , x(nm), θ(1), θ(2), · · · , θ(nu)) =

1

2

∑
(i,j):r(i,j)=1

(
(θ(j))Tx(i) − y(i,j)

)2
+

λ

2

nm∑
i=1

n∑
k=1

(
x
(i)
k

)2
+
λ

2

nu∑
j=1

n∑
k=1

(
θ
(j)
k

)2
The last two terms are simple the penalties of the two
objective functions. The first term is formed by coalesc-
ing the first term of the wo objective function thereby
removing the restriction of i or j.

We need to minimize J i.e

min
x(1),x(2),··· ,x(nm)

θ(1),θ(2),··· ,θ(nu)

J(x(1), · · · , x(nm), θ(1), · · · , θ(nu))

One way to do it is via Gradient Descent Algorithm. Up-
date θ and x simultaneously.

x
(i)
k := x

(i)
k −α

(∑
j:r(i,j)=1

((θ(j))Tx(i)−y(i,j))θ(j)k +λx
(i)
k

)

θ
(j)
k := θ

(j)
k −α

(∑
j:r(i,j)=1

((θ(j))Tx(i)−y(i,j))x(i)k +λθ
(j)
k

)
where α is the learning rate.

This is a novel algorithm yet mysteriously simple
algorithm used used in Movie Recommendation En-
gines. It was first demonstrated in nexflix challenge

that matrix factorization models are superior of classical
nearest-neighbour technoques. This methods allows
incorporation of additional information such as feedback,
temporal effects and confidence levels.

We will now try to express the same algorithm in a
slightly different way. Given a set of users and a set of
movies, the partial information about the ratings can be
stored in a matrix whose (i, j)th entry corresponds to
the rating of ith movie by jth user. Matrix Factorization
exploits the fact that there should be some latent features
that determine how a user rates an item.

With a set U of users and D of items, let
R : U,D → U × D be the rating matrix. Our task
is to find two matrices P (K × |U |) and Q(K × |D|) such
that their product approximates R.

R ≈ PT ×Q = R̂

Here K is the number of features chosen. Note that this
is exactly the same as what we have already analyzed
except for the fact that vectors have now been embedded
into a matrix.

The rating corresponding to ui and dj would be:

r̂ij = pTi qj =

k∑
k=1

pikqkj

The error term defined here is:

e2ij = (rij − r̂ij)2 = (rij −
k∑
k=1

pikqkj)
2

The total error would then be,

E =
∑

(i,j)∈κ

e2ij =
∑

(i,j)∈κ

(rij − r̂ij)2

=
∑

(i,j)∈κ

(rij − pTi qj)2 + λ(‖pi‖2 + ‖qj‖2)

where κ is the set of pairs of movies and users which have
been rated. Minimizing the error, the gradient descent up-
date rule will then be:

pi ← pi + α(eijqj − λpi)

qj ← qj + α(eijpi − λqj)

The process can be stopped when the total error E be-
comes less than a certain threshold.

3

Figure 1: A graph showing th number of predicted
classes for different ratings for a simple classifier. The
lines corresponding to ratings of 1, 2, 3, 4, 5 are, re-
spectively, dark blue, green, red, light blue and pink.
The test dataset consisted of a total of 20000 data
points. The number of points in classes 1, 2, 3, 4, 5 were
1391, 2192, 5182, 6778, 4457 respectively.

Results

We firstly experimented using a Simple classifier. The
graph here shows the results obtained: As evident from
the figure ??, the number of predicted ratings peak at
the point of actual rating. For example, blue line having
an actual rating of 4 peaks at the rating of 4. Similarly,
pink line of actual rating 5 peaks at 5 and so on. Actually,
most of the data point was concentrated around a region
of actual rating plus or minus one.

The number of correctly classified instance for this
classifier was very low viz. 35.57%. One prime reason
was the fact that a classifier assumes it to be a classifi-
cation problem whereas it actually is a rating prediction
problem. Hence, nearly correct predicted ratings were
deemed incorrect in this model.

Coming to the Content Based Filtering and Low Rank
Matrix Factorization, the results were fairly accurate. The
plotted histograms show the number of predicted users
for different actual ratings viz. 1, 2, 3, 4, 5. As shown in
the histogram, the predicted rating peaks at the actual
rating most of the time. The error in this phase was
only very low. We reported an error of approximately
18.11% i.e. an accuracy of more than 81% in this method.

Figure 2: Histogram for actual rating 1

Figure 3: Histogram for actual rating 2

The error was calculated as follows :− the Content
Filtering Based Linear Regression model predicts a rating
which is a real number, say r̂. Suppose the actual rating
is r. Then the error defined for this prediction is simpy
|r − r̂|. This is summed up over all the test instances and
then the average value of this error is taken. It turned
out to be nearly 18.11% which means on an average, the
predicted value deviates by 18.11% from the actual value.

This method lacked one major feature : inability to
predict the ratings for new users because it doesn’t lay
any accord on user-user interaction or the similarity
between two users. To mitigate this problem, we moved
on to the method of Low Rank Matrix Factorization. Note
that by using this method, the accuracy is not improved
consideraly but now we are able to predict ratings for a
entirely new user.

The results for this method have been omitted due
to 2 reasons:

4

Figure 4: Histogram for actual rating 3

Figure 5: Histogram for actual rating 4

Figure 6: Histogram for actual rating 5

1. This method didn’t give considerable edge over ac-
curacy. For exisiting users who have already rated
some of the movies, the results obtained were more
or less similar to the ones obtained in Content Based
Filtering.

2. Training the classifier took a considerably large
amount of time. Once trained, we saved this clas-
sifier as an object. Hence, we were not able to train
to multiple times varying different parameters so as
to obtain the best possible result.

Shortcomings and Future Work
Here are a few points that can be looked into:

• Value of K for feature matrix. In the Low Rank Ma-
trix Factorization method, this K is chosen arbitrar-
ily. This has to be fixed somehow so as to reflect
different attributes/features of movies and users.

• Prone to extreme ratings. Users with similar tastes
can rate movies differently (one may be lenient
whereas the other is strict). So our, our method
doesn’t account for this. Actually, a bias term µ can
be introduced to keep a tab on this.

Platform Used
For almost all the Meachine Learning aspect of the
project, we used weka barring one part where we used
python for building a feature matrix. We used python for
building all the relavant .arff files. For making different
graphs and histograms, we again used python.

References
1. Video Lecture on Mideo Recommender Systems in

Machine Learning Course on Coursera by Andrew
Ng

2. Matrix Factorization Techniques For Recommender
Systems, Yehuda Koren, Robert Bell, Chris Volinsky

3. Algorithms and Methods in Recommender Systems,
Daniar Asanov

5

