
Face swapping and harmonization using neural nets

Akshay Kumar
Stanford University

akshayk@stanford.edu

Abstract

The advent of online social media networks such as face-
book, instagram or pinterest has ignited the question of pri-
vacy concerns on online social networking sites. Accused of
affecting US presidential election results, facebook has also
been been sued by privacy advocates for face recognition
because it identifies a user in an image without their con-
sent. Motivated by this, in this paper, we will try to study if
it is possible to fool a face recognition software by means of
exchanging the faces.

Towards this goal, we will develop a three step approach
meant to exchange the face of a user in an image by the face
of another (base or anonymous) user such that the face de-
tector can not recognize the original face. The three steps
of our algorithm our : face detection, face swapping and
face blending. Finally, we will evaluate our results by com-
paring the output images from our algorithm against target
image to check if they belong to the same person or not.

1. Introduction
The advent of online social media networks like face-

book, pinterest, etc. has brought the problem of face de-
tection to a foray. DeepFace [21], the state of the art algo-
rithm used by Facebook for face detection, achieves an ac-
curacy of 97.35% on the LFW (Labeled Faces in the Wild)
dataset (better than human performance). Apple launched
FaceID as an alternative to password to securely unlock
your iphone/macbook.

However, all these technologies beg the question of on-
line privacy of your facial photos on internet. The question
is multi fold in the sense that multiple online privacy groups
have filed lawsuit against, for e.g., facebook and there have
been work around spoofing face detection techniques used
to unlock laptops [20].

Motivated by this, in this project, we will approach the
problem of anonymization of faces in a image. Given a face
we want to replace it by a different face which can not be
easily recognized by a face recognition algorithm. We will
follow a three step approach: (1) detect face in an image; (2)

Figure 1. Overall framework of our algorithm

swap it with a different face; (3) blend the new face into the
image using techniques like harmonization [11]. Finally,
we have an additional step related to Face Verification for
evaluating our method.

2. Related Work
Face Anonymization is a well studied problem in com-

puter vision. The current literature is based on multiple
techniques like similarity based metric [13], adversarial
training [16] or very simple techniques like gaussian blur-
ring of the recognized face [18]. However, a overall feature
of all these approaches is that the underlying face is still the
face.

In this project, we take a departure from this approach
and try to anonymize the face as a three step process by first
recognizing face in an image, swapping it and the blending
the new face into the original image.

Face detection. Face detection has been an active field
of research and a seminal paper in this field is Viola-Jones
object detection framework for face detection [23]. Viola-
Jones uses Haar feature to form matchable facial features
and builds integral image so that rectangular features can be
detected in constant time. It then uses a variant of Adaboost
to create strong classifiers and select the best features. Fi-
nally, they get a cascade classifier by combining selected
features into a cascade architecture.

Recently, researchers have started experimenting with
deep learning architectures for face detection. We will now
discuss about them. Zhang et al. [24] used a three stage fully
convolutional network: (1) Proposal Network (P-Net) to ob-
tain possible bounding box windows. (2) These bounding
box are fed to Refine Network (R-Net) to eliminate multi-
ple possible candidate boxes either by merging highly over-
lapping boxes or using bounding box regression (We will
do some similar in our project as well. More details in

1

next section.). detection. (3) Finally, they look at the fa-
cial landmarks in remaining candidate boxes to correctly
determine the correct face box [Figure 2]. There has also
been some past work around using SVMs [15] for face de-
tection. Edgar et al. [15] trained at SVM classifier for faces
in an image and achieved a detection rate of 74.2% on their
dataset.

Figure 2. CNNs for face detection [24]

The major problem with face detection was the size of
search space : the sliding window for face detection has to
look at all possible boxes. R-CNN overcomes this by look-
ing at Region of interests which are regions with high like-
lihood of a face. Faster implementations of R-CNN, Fast
R-CNN and faster R-CNN speed up the process by only
first passing the image through a conv image map and then
apply Regions of Interest. In this project, motivated by [3],
we will adopt a CNN based approach to detect face in an
image. Note that face detection is different from face recog-
nition and in this part, we are mainly concerned with face
detection. We will briefly touch upon face recognition in
the end for evaluation strategies.

Face Swapping. There has been some work around face
swapping [10, 5, 14]. They reply on a pattern of face align-
ment by replacing facial features of the first image by the
facial features of the second image by detecting facial land-
marks in the first image, fitting the second image into the
first by rotating and scaling the face in second and harmo-
nizing it.

However, an essential problem with this approach is it is
not receptive to face orientation and this can easily distort
the new face orientation. We used the approach of [7] to
swap faces of Donald Trump and Barack Obama. The out-
put image, as seen in Figure 2, is highly distorted by original
face orientation and the texture is still unaffected.

Figure 3. Face Swap : Superimposing Obama’s face on
Trump’s [7]

Face Blending. Image blending is a well known prob-
lems and uses techniques like Active Shape Models to de-
termine distinctive textures and features like face and hands
and uses them to transpose a new face rotated into the orig-
inal image [6]. However, in context of face blending, they
suffer from the same drawback that it is easy to trace back
the original image.

Another possible approach is to use style transfer tech-
niques using deep neural nets to blend a new face into a
content image [8]. In this approach, we have a target im-
age (the images composed of face swapped) and two input
images : the original image (the old face) and the swapped
image (the new face). We adopt a deep dream approach ??
and compare similarity based on euclidean distance to orig-
inal image’s face and style (using gram matrix) to target
image. However, this leads to deep dream kind of images
which does not work for face blending.

We will use Poisson blending to blend the face into the
target image (described in detail in next section).

2.1. Face Verification

Face Verification falls into the same realm of face recog-
nition and any state of the art algorithm like Facebook’s
Facenet [19] or Deepface [21] can be used to verify that
two faces are of the same person. They achieve accuracy of
more than 97%.

3. Method
As discussed previously, we break down out approach

into three components: face detection, face swapping and

2

face blending. We use a CNN based model along with slid-
ing window for face detection. For face swapping, we sim-
ply swap the faces of the source and destination image. For
face blending, we rely on poison blending to blend a face
into its surrounding image. The three parts are discussed
more in detail here:

3.1. Face Detection

Our face detection algorithm is similar to [1]. The advan-
tage with concentrating just on face detection rather than the
whole problem is that here, we only have one face to detect.
The current state of art mechanism for CNNs based face
detection is more complex as it detects all the faces in an
image. In our case, the task at hand is simpler.

Our overall approach is to scan through the image and
check parts of it (called a bounding box or a mask) for a
face. We use a CNN based model for learning a bounding
box around the human face in the image. The bounding box
is composed of two things: coordinate and size. The model
architecture is as follows (Figure 3.1):

- 4 5 X 5 Convolution Layer
- ReLU layer
- 16 3 X 3 Convolution Layer
- ReLU layer
- MAX POOL layer
- 32 3 X 3 Convolution Layer
- ReLU layer
- FC layer
- ReLU layer
- Softmax

We first resize the input image to 300 X 300 size. To
detect the location of face in an image, we follow a sliding
window approach as described in [22]. A faster approach is
using Regions of Interest (RoI) [4] approach but we ensured
quick computation speed by using higher strides.

The sliding window is of size 40 × 40, 50 × 50, . . . ,
100 × 100. We use a stride of 20 during training. Each
candidate box is then reshaped to size 32 and used to train
the network.

The network gives a score for each of the sliding window,
i.e., high score sliding window are highly likely to contain
a face. For generating the final output box, the commonly
used technique is Non maximum suppression (NMS) [17] :
In NMS, we set a threshold on the output score and discard
sliding windows below this output score. It then merges the
boxes which intersect with each other. Finally, it predicts
the box with maximum output.

However, in our case, the image has only 1 single face.
Hence, NMS is not needed. Instead, we simply pick the
mask with highest score as that as good enough approxima-
tion of the correct face. Refer Figure 3.1 for a sample output
of our face detection framework.

3.2. Face Swapping

This part is simple : we simply swap the faces found in
two images after appropriate scaling.

Since the faces detected in source image and destination
image can be of different sizes, we scale the face in source
image to be of the same size as that of destination image.

Refer Figure 3.2 for a sample output.

3.3. Face blending

Once we have the source face swapped into the desti-
nation image, we will use Poisson Image Editing to merge
the source face into the destination image. Poisson Image
Editing by first described by Patrick et. al. in [17].

Poisson Image Editing in based on the fact that it’s very
easy for us to recognize abrupt changes in an image (for
e.g., a different face with a different image in our case).
This can be mathematically termed as an abrupt change in
gradient. Poison Image Editing tries to preserve the gradient
such that colors do not change abruptly.

We will now pose this problem mathematically as de-
scribed in [2].

As shown in Figure 3.3,

• g: Selected region of source (Source face in our case)
• S: Destination image
• v: Gradient of region in g

• Ω: Region g that is now replaced on domain S (source
background)
• ∂Ω: Boundaries between the source and destination

images.
• f∗: Known functions that exist in domain S (destina-

tion image in our case)
• f : Unknown functions that exist in domain Ω

Governed by equation described in [2], we will try to
minimize the change in gradient upon moving from source
face to the destination image:

min
f

∫ ∫
Ω

|∇ − v|2 with f |∂Ω = f∗|∂Ω

whose solution is the solution of the Poisson’s equation

∆f = divv over Ω with f |∂Ω = f∗|∂Ω

Here, divv = ∂v
∂x + ∂v

∂x . ∆ is the laplacian operator 0 −1 0
−1 4 −1
0 −1 0

.

The laplacian operator to the Poisson equation will give
us

divG = −4f(x, y)+f(x−1, y)+f(x, y−1)+f(x+1, y)+f(x, y+1)

3

Figure 4. Neural Network architecture for face detection

Figure 5. Face detection using approach described in Section 3.1

Figure 6. Swapping out of two face in an images. Trump’s face
interposed on top of Obama’s

3.4. Face Verification

We use the approach of Zhang et. al. [24] as described
in [12] to verify if two faces are similar or not.

Towards this end, we use python’s facenet library to
compare the similarity of two faces. The model gives a
128 bit vector as output to an input image, which we call
as embeddings. We compute the L2 norm between two em-
beddings.

Figure 7. Poisson Image Blending Overview [2]

d(u, v) =
√

Σi(ui − vi)2

We decide if two images are of the same person based on
a threshold for embedding similarity, i.e., the two images
belong to same person if embedding distance is less than,
say, 1.

4. Dataset
The first part of our approach, face detection, requires

image dataset to train the CNN based model for face detec-
tion. Towards this end, we use annotated LFW (Labelled
Images in the Wild) dataset to train the classifier [9].

LFW dataset contains 13k images of faces collected
from web. In addition, each of the image has been labelled
with the name of the person. Please note that LFW dataset
is also augmented by the name of person however we dis-
card that data for our purposes. The faces on original LFW
dataset were detected by Viola-Jones algorithm. Refer Fig-
ure 4 for sample images from the LFW dataset.

We further augment the dataset by flipping the images
horizontally. The training:validation:testing split used is
60:20:20.

5. Results
During the first phase of our algorithm (face detection),

we started with a model pretrained on LFW [1]. This model
had a validation accuracy of more than 98%. We used

4

Figure 8. Sample images from LFW dataset

OpenCV for the final part of our project. In particular,
for Poisson Image Blending, we used seamless cloning of
opencv.

We will now present both the qualitative and quantitative
results of our algorithm.

5.1. Qualitative Results

As a crude test of our approach, we will first present the
results by swapping the faces of the same person.

Figure 9. Algorithm’s output of two similar photos of Obama

Figure 5.1 shows the output of the algorithm for the im-
age of Barack Obama (both source and destination image
are the same). The first row corresponds to the source im-
age and the last row corresponds to the destination image.

The various images, in order are (left to right, top to bot-
tom):

1. Original source image
2. Source image with face detected as blacked out
3. Cropped out face from the source image
4. Destination image
5. Destination image with target face surrounded by a box
6. Final image : Destination image with source image

face blended into destination face.

We will now present the results for a few more pair of
images. Results in Figure 5.1, 5.1, 5.1 and 5.1.

These examples have been cherrypicked since they
uniquely demonstrate some of the good swappings and
some bad swappings.

Figure 10. Face swapping for Sachin Tendulkar and Virat Kohli

Figure 11. Face swapping for David Beckham and Christiano
Ronaldo

- In Figure 5.1, the image blending has not been so

5

Figure 12. Face swapping for Niki Lauda and James Hunt

Figure 13. Face swapping for Tom Cruise and Daniel Craigman

smooth and parts of eyes of both source and destina-
tion image is visible in target image.

- In Figure 5.1 and 5.1, the swapping is better and parts
of faces (especially eyes) have been replaced by the
source face.

- In Figure 5.1, the image blending didn’t happen cor-
rectly. It can be observed that the eyes in destination
image got replaced by hairs of source image.

As evident from these images, the algorithm used by us
is highly susceptible to the original orientation of the two
images. Also, things like relative position of facial features
like eyes play a major role in how the output image looks
like.

5.2. Quantitative Results

The original problem statement was to anonymize the
face in an image. Since there’s no notion of accuracy of our
algorithm (there’s nothing to compare the output against),
we will define a confusion matrix kind of notion to evaluate
the quantitative performance.

Using face verification framework, we look at the simi-
larity of the output image from both a random person corre-
sponding to both source image and a random person corre-
sponding to destination image.

The results have been summarized in Table 5.2. While
evaluating the performance, to be on the safe side, we com-
pared the similarity of output image with original destina-
tion image, not a another image corresponding to the same
person as that in destination image. As a result, the error
reported here is amplified.

We will now describe the results obtained here. For (1)
and (4), in output image, it can be clearly seen that the
source face is on top of destination face in output image.
Hence, the face verifier correctly predicted that the face in
output image is similar to source image but not to destina-
tion image. In (3), the face swapping wasn’t perfect and the
eyes of destination image are supposedly replaced by hairs
of the source image. Hence, the face verifier predicts that
the output image is similar to source image but not to des-
tination. In (2), the eyes haven’t been completely swapped
out and eyes from both source and destination image can
be seen in output image. Hence, the face verifier says that
output image is similar to both the images.

Note that we mainly care about the error between desti-
nation image and output image since our main focus is to
anonymize the destination image (but it’s a good exercise
nonetheless to look at error from source image as well. We
would ideally want output image’s face to match source im-
age’s).

Overall, we ran this algorithm on 25 pairs of (source,
destination) image and compared the similarity of ouput im-
age to them. In 17 cases, output image was not similar to the
destination image. In 15 cases, output image was similar to
the source image.

The overall confusion like matrix is shown in Table 5.2.

6. Conclusion
We tackled the problem of face anonymization in online

social media settings using a three step approach of CNNs
based face detection, face swapping and face blending. The
results we obtain were able to replace the face in the target
face but with some caveats:

- Our model is highly susceptible to texture difference
in the two faces.

- It can’t take into account orientation aspects. For e.g.,
if the eye is aligned horizontal in source image and
vertically in destination image, our algorithm will try
to align the eye horizontally in destination image.

- As shown in one of examples, sometimes the faceswap
can not eb so accurate and we may end up swapping
different features of the face.

- We try to blend the source face into destination image
by blurring the edges. Even if this is successful, the
color/texture of the face/skin can be vastly different.
As such, it is easy to recognize that the output image’s
face is composed of two different faces.

6

Figure 14. Confusion type matrix for the performance of the algorithm described above

Figure 15. Overall confusion like matrix

One promising approach to now try is to compute start
off with the target image to be the same as source image
and then modify by be minimizing its face distance from
destination image.

7. Contributions & Acknowledgements
We would like to thank CS231N course staff for help-

ing us with all the stuff. Our original team consisted of
three team members but one of them dropped the course

7

after project proposal and the other dropped the course af-
ter project milestone. So the work on final project (after
project milestone) was done by only one person. Before
that, the contribution was equal (equally among three for
project proposal and equally among two for project mile-
stone).

We used the codes from following github repo for our
project for getting a pretrained model for face detect:
FaceDetect

References
[1] Facedetect. https://github.com/PCJohn/

FaceDetect. Accessed: 2018-05-15.
[2] Poisson blending. http://eric-yuan.me/

poisson-blending/. Accessed: 2013-10-15.
[3] Cnns for face detection and recognition. pages 1–7, 2017.
[4] B. Alexe, T. Deselaers, and V. Ferrari. Measuring the ob-

jectness of image windows. IEEE transactions on pattern
analysis and machine intelligence, 34(11):2189–2202, 2012.

[5] D. Bitouk, N. Kumar, S. Dhillon, P. Belhumeur, and S. K.
Nayar. Face swapping: automatically replacing faces in pho-
tographs. In ACM Transactions on Graphics (TOG), vol-
ume 27, page 39. ACM, 2008.

[6] A. Chou and Y. Hong. Face detection, extraction, and swap-
ping on mobile devices.

[7] M. Earl. Switching Eds: Face swapping with Python, dlib,
and OpenCV, 2015 (accessed May 15, 2017).

[8] L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm
of artistic style. arXiv preprint arXiv:1508.06576, 2015.

[9] V. Jain and E. Learned-Miller. Fddb: A benchmark for face
detection in unconstrained settings. Technical Report UM-
CS-2010-009, University of Massachusetts, Amherst, 2010.

[10] V. Kazemi and S. Josephine. One millisecond face alignment
with an ensemble of regression trees. In 27th IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR
2014, Columbus, United States, 23 June 2014 through 28
June 2014, pages 1867–1874. IEEE Computer Society, 2014.

[11] F. Luan, S. Paris, E. Shechtman, and K. Bala. Deep painterly
harmonization. CoRR, abs/1804.03189, 2018.

[12] A. Mandal. MTCNN Face Detection and Matching using
Facenet Tensorflow, 2018 (accessed Feb 18, 2018).

[13] T. Muraki, S. Oishi, M. Ichino, I. Echizen, and H. Yoshiura.
Anonymizing face images by using similarity-based metric.
In Availability, Reliability and Security (ARES), 2013 Eighth
International Conference on, pages 517–524. IEEE, 2013.

[14] Y. Nirkin, I. Masi, A. T. Tran, T. Hassner, and G. Medioni.
On face segmentation, face swapping, and face perception.
arXiv preprint arXiv:1704.06729, 2017.

[15] E. Osuna, R. Freund, and F. Girosit. Training support vec-
tor machines: an application to face detection. In Computer
vision and pattern recognition, 1997. Proceedings., 1997
IEEE computer society conference on, pages 130–136. IEEE,
1997.

[16] Z. Ren, Y. J. Lee, and M. S. Ryoo. Learning to anonymize
faces for privacy preserving action detection. arXiv preprint
arXiv:1803.11556, 2018.

[17] R. Rothe, M. Guillaumin, and L. Van Gool. Non-maximum
suppression for object detection by passing messages be-
tween windows. In Asian Conference on Computer Vision,
pages 290–306. Springer, 2014.

[18] N. Ruchaud and J.-L. Dugelay. Automatic face anonymiza-
tion in visual data: Are we really well protected? Electronic
Imaging, 2016(15):1–7, 2016.

[19] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A
unified embedding for face recognition and clustering. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 815–823, 2015.

[20] L. Souza, M. Pamplona, L. Oliveira, and J. Papa. How far did
we get in face spoofing detection? CoRR, abs/1710.09868,
2017.

[21] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:
Closing the gap to human-level performance in face verifi-
cation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1701–1708, 2014.

[22] R. Vaillant, C. Monrocq, and Y. Le Cun. Original approach
for the localisation of objects in images. IEE Proceedings-
Vision, Image and Signal Processing, 141(4):245–250, 1994.

[23] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In Computer Vision and Pattern
Recognition, 2001. CVPR 2001. Proceedings of the 2001
IEEE Computer Society Conference on, volume 1, pages I–I.
IEEE, 2001.

[24] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face detection
and alignment using multitask cascaded convolutional net-
works. IEEE Signal Processing Letters, 23(10):1499–1503,
Oct 2016.

8

ttps://github.com/PCJohn/FaceDetect
https://github.com/PCJohn/FaceDetect
https://github.com/PCJohn/FaceDetect
http://eric-yuan.me/poisson-blending/
http://eric-yuan.me/poisson-blending/

